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A Parameter-Optimizing Model-Based Approach to the Analysis of
Low-SNR Image Sequences for Biological Virus Detection

Abstract:

This thesis presents the multi-objective parameter optimization of a novel image analysis
process. The focus of application is automatic detection of nano-objects, for example biological
viruses, in real-time. Nano-objects are detected by analyzing time series of images recorded
with the PAMONO biosensor, after parameters have been optimized on synthetic data created
by a signal model for PAMONO.

PAMONO, which is short for Plasmon-Assisted Microscopy of Nano-Sized Objects, is
a biosensor yielding indirect proofs for objects on the nanometer-scale by measuring the
Surface Plasmon Resonance (SPR) effects they cause on the micrometer scale. It is an optical
microscopy technique enabling the detection of biological viruses and other nano-objects
within a portable device. The PAMONO biosensor produces time series of 2-D images on the
order of 4000 half-megapixel images per experiment. A particular challenge for automatic
analysis of this data emerges from its low Signal-to-Noise Ratio (SNR). Manual analysis takes
approximately two days per experiment and analyzing person.

With the automatic analysis process developed in this thesis, occurrences of nano-objects
in PAMONO data can be counted and displayed in real-time while measurements are being
taken. Analysis is divided into a GPU-based detector aiming at high sensitivity, complemented
with a machine learning-based classifier aiming at high precision. The analysis process is
embedded into a multi-objective optimization approach that automatically adapts algorithm
choice and parameters to changes in physical sensor parameters. Such changes occur, for
example, during sensor prototype development.

In order to automatically evaluate the objectives undergoing optimization, a signal model
for the PAMONO sensor is proposed, which serves to synthesize ground truth-annotated data.
The parameters of the analysis process are optimized on this synthetic data, and the classifier
is learned from it. Hence, the signal model must accurately mimic the data recorded by the
sensor, which is achieved by incorporating real sensor data into synthesis.

Both, optimized parameters and the learned classifier, achieve high quality results on the
real sensor data to be analyzed: Nano-objects with diameters down to 100 nm are detected
reliably in PAMONO data. Note that the median SNR over all nano-objects to be detected
was below two in the examined experiments with 100 nm objects.

While the presented analysis process can be used for real-time virus detection in PAMONO
data, the optimization approach can serve in accelerating the advancement of the sensor
prototype towards a final setup of its physical parameters: In this scenario, frequent changes in
physical sensor parameters make the automatic adaptation of algorithmic process parameters
a desirable goal. No expertise concerning the underlying algorithms is required in these use
cases, enabling ready applicability in a lab scenario.

Keywords:
Parameter Optimization, Automated Microscopy, Low SNR, Data Analysis, Image Processing,
Time Series Analysis, Nano-object Detection, Biological Virus Detection, Biosensor







Contents

1 Introduction

1.1
1.2
1.3
14

Motivation and Relevance . . ... ... .. ... ... . ... . ... . ....
Contributions of this Work . . . . . .. ... ... ... ... .. ... ....
Organization of the Thesis . . . . .. ... ... ... .. ... ...
Acknowledgment . . . . .. .. ...

2 Biological Virus Detection with the PAMONO Sensor

2.1
2.2
2.3

3.1
3.2
3.3
3.4

3.5

3.6

3.7

3.8

3.9

PAMONO Capabilities and Applications . . . . . .. ... ... ... .....
The Physics Behind the PAMONO Sensor . . . . ... ... ... .......
PAMONO Data and Analysis Task . . ... ... .. ... .. .........

The SynOpSis Approach

Abstract Task Description . . . . . ... ... ... . . . ..
SynOpSis Overview . . . . . . . e
Related Work . . . . . . . o o
Synthesis Stage . . . . . . . . L
3.4.1 Signal Model . . . .. ...
3.4.2 Synthetic Ground Truth Patterns and Classification . ... ... ..
Pattern Detector . . . . . . . . . ...
3.5.1 Inputand Output . .. ... ... .. ... . ... .. ... ..
3.5.2 Objectives . . . . . . .
Pattern Classifier . . . . . . . . .. .
3.6.1 Inputand Output . . ... ... ... ... . ... .. ... ...,
3.6.2 Objectives . . . . . . .
Optimization Stage . . . . . . . . . ..
3.71 Related Work . ... ...
3.7.2  Algorithm Choice for Optimizing PAMONO Data Analysis . . . . .
3.7.3 Genetic Algorithms . . . . .. .. ... ...
3.7.4  Multi-Objective Genetic Algorithms . . . . ... ... ... ... ...
3.7.5 Non-Dominated Sorting Genetic Algorithm IT (NSGA-II) . ... ..
3.7.6  Global versus Sequential Optimization of SynOpSis. . . . . ... ..
Desirability Functions for Formalizing Expert Preferences . . ... ... ..
3.8.1 Harrington Desirability Functions . . . . ... ... ... ... ... ..
3.8.2 Desirability Indices . . . ... ... oo
3.8.3 Desirability in SynOpSis . . . . . ... .. ... oL
Model Selection and Performance Estimation . . . . .. ... .. ... ....
3.9.1 Generalization Performance . . . ... ... ... ... .........
3.9.2 Model Selection . . .. ... ...
3.9.3 Performance Estimation . .. ... ... ... ... ... ... .....

3.10 Summary of SynOpSis and Application Stage . . . . . ... ... ... ....

vii

0 3 O N =

©o ©

12
13

17
18
19
22
33
33
34
34
35
35
40
41
43
46
47
48
50
54
56
58
59
60
61
62
63
64
65
67
68



viii Contents
4 Synthesis Stage for PAMONO 71
4.1 Introduction . . . . . . .. L 71
4.2 A Signal Model for the PAMONO Sensor . . . ... .............. 73
4.3 Applying the Model . . . .. .. ... ... 75
4.3.1 Experimental Protocol . . . ... ... ... ... ... 76
4.3.2 Computation . . . . . . ... . 7

4.4 Conclusion . . . . . . . . . e 78
5 Pattern Detector for PAMONO 81
5.1 Introduction . . . . . . . . .. . 82
5.2 Background Elimination . ... ... ... ... ... ... o .. 84
5.2.1 Averaging Background Elimination . . . . ... ... ... .. ..... 85
5.2.2  Median Background Elimination . . .. ... ... ... ..... ... 88
5.2.3 Step Responses of Background Elimination Techniques. . . . . . .. 88
5.24 Parameters . . . . . ... 90

5.3 Denoising . . . . ... ... e 90
5.3.1 Spatial Denoising Techniques . . . .. ... ... ... ... ...... 92
5.3.2 Fuzzy Spatiotemporal Denoising . . . . .. ... ... ... ...... 95
5.3.3 Application-Specific Cleaning Heuristics. . . . . ... ... ... ... 98
5.3.4 Parameters . . . . ... ... 99

5.4 Time Series Classification via Fuzzy Template Matching . . .. ... .. .. 100
5.4.1 Time Series Preselection . . . ... ... ... ... ... ........ 101
5.4.2 Matching Score . . . . . .. ... 102
5.4.3 Fuzzy Time Series Classification . . ... ... ... ... ....... 104
5.4.4 Parameters . . . . . . . . ... e e 106

5.5 Time Series Classification via Translation-Invariant (TT) Wavelet Features 107
5.5.1 Translation-Invariant Feature Extraction . . .. ... ... ... ... 110
5.5.2 Feature Ranking and Selection . . ... ... ... ... ........ 112
5.5.3 Condensed k-NN Using Fast Coreset Clustering . . . . ... ... .. 113
5.5.4 Performance . ... .. ... ... 115
5.5.5 Comparison to Fuzzy Template Matching . . . . ... ... ... ... 123
5.5.6 Conclusion . ... ... ... ... e 125

5.6 Segmentation . . . . . . ... 127
5.6.1 Preprocessing on the Pixel-Level . . . . ... ... ... ........ 128
5.6.2 Aggregating Pixels to Polygons . . . . .. ... ... ... ... ..., 129
5.6.3 Postprocessing on the Polygon-Level . . . . .. ... ... ... . ... 131
5.6.4 Parameters . . . . . . . .. 132

5.7 Parameters of the Detector . . . . . . ... ... ... L 133
5.8 Matching and Labeling . . . . .. ... ... . o 135
5.9 Conclusion . . . . . .. . . .. e 138
6 Pattern Classifier for PAMONO 141
6.1 Introduction . . . . . . . . . . . . . e 142
6.2 Feature Extraction . . . . ... .. .. .. 145
6.2.1 Features of Polygon Shape . . . . ... ... ... ... ...... ... 145
6.2.2 Features of Spatial Intensities . . . . .. ... ... ... ... ... 148



Contents

ix

6.3

6.4

6.5

6.6

6.7

6.8
6.9

6.2.3 Features of Spatiotemporal Intensities . . . ... ... ... ... ...

Balancing Class Prevalence

6.3.1

6.3.3

Feature Scale Normalization

6.4.1

Feature Selection

6.5.1
6.5.2

Learning Algorithms

6.6.1
6.6.2
6.6.3
6.6.4
Results
6.7.1
6.7.2
6.7.3
6.7.4

Remaining Parameters of the Classifier
Conclusion

Synthetic Minority Over-Sampling Technique (SMOTE) . . . . . ..
6.3.2 Adaptive Synthetic Sampling (ADASYN) . . . ... ... ... .. ..

Balancing in SynOpSis . . . ... ..

Methods for Affine Feature Scale Normalization . . . . .. ... ...
6.4.2 Applying Feature Scale Normalization . . . . . ... ... ... ....

Approaches to Feature Selection . .
Feature Selection in SynOpSis. . . .

k-Nearest Neighbors Algorithm (k-NN) . ... ... .. ... ... ..

Support Vector Machine (SVM) . .
Random Forest. . . . ... ... ...
Naive Bayes . ... ... .......
Learning Algorithms . .. ... ...
Balancing Class Prevalence . . . ..
Feature Selection . .. ........
Feature Extraction . ... ... ...

7 Evaluation of SynOpSis for PAMONO

7.1

7.3

7.4
7.5

Introduction
7.2 PAMONO Experiments

7.2.1

7.2.3

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

PAMONO Sensor Setup and Variations . . . . ... ..........
7.2.2 Description of PAMONO Experiments . ... .............

Signal-to-Noise Ratios . ... .. ..
Setup of SynOpSis for PAMONO
Objectives and Reported Measures .
Genetic Algorithm Settings . . . . .
Desirability Settings . ... ... ..

Model Selection and Performance Estimation Strategies . . . . . . .

Computing Classifying Models . . .
Measurement System . . . . ... ..

Ilustrated Results of a Single Optimization and Analysis. . . . .. ... ..
Optimization Options and Final Analysis Results . . . ... ... ... ...

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7

Results Over Datasets . . ... ...
Results Over Optimization Modes .
Results Over Desirability Modes . .

Choice of Optimization and Desirability Mode . . . . ... ... ...

Final Analysis Results Over Experiments . . . . ... ... ... ...

Quality of Performance Estimates .

Specificity of Final Analysis Results

150
152
154
155
156
157
157
158
159
159
161
162
162
163
165
167
168
170
175
178
179
181
182

183

184
184
185
186
187
190
191
193
195
197
199
200
200
204
206
207
209
210
212
217
219



X Contents

7.5.8 Computation Time . . ... ... ... ... ... ... .. ... ... 220

7.6 Parameter Choices of the Optimization Stage . . . . . . ... ... ... ... 223
7.6.1 Examining Pareto Fronts in Parameter Space . . ... ... ... .. 223

7.6.2 Modeling Parameter Set Quality in Objective Space . ... ... .. 229

7.7 Cross-Experiment Generalization Performance . . ... ... ... ... ... 233

8 Conclusion and Future Work 241
8.1 Conclusion . . . . . . . . . e 241
8.2 Future Work . . . . . . . . .. 243

A Performance Measures and Equivalences 251
B Comparison of Wavelet Bases 255
C Publications and Author’s Contributions 257
Acronyms 261
Mathematical Symbols 265

Bibliography 269



CHAPTER 1

Introduction
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1.1 Motivation and Relevance. . . . . ... ... . ... ... ... ..., 2
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1.3 Organization of the Thesis .. ... ... ... ... ... ..., 7
1.4 Acknowledgment . ... ... ... ... ... i, 8

Automation of quantitative microscopy, e.g. counting certain objects of interest in micro-
scopic images, received increasing attention in the last decades. The reason is that the scale
of experiments and hence the number of objects to be detected became larger and larger,
thus rendering manual evaluation a severe bottleneck. Numerous approaches to alleviate this
bottleneck have been proposed, exploiting the increasing image processing power of modern
computers to (semi-)automate the time-consuming object detection tasks that otherwise would
have to be performed manually. Typically, the development of modality-specific algorithms
for automatic analysis takes place after the development of the microscopy technique itself
has already been completed. Hence these algorithms focus on established imaging techniques
that have been fully evolved. Variations in the physical-world parameters of the microscopy
device are small, and the kind of data to be analyzed can be regarded as virtually ‘the same
every time.

i

However, also the developmental phase of a novel microscopy technique can largely benefit
from early availability of an automatic data analysis process: Developing a new type of
microscopy device can be regarded as an experiment with many physical parameters that can
be varied. The impact of modifying these physical parameters must be evaluated, in order
to identify the most suitable setup of the device for a given purpose. This requires a large
number of measurements to be conducted. Being able to automatically analyze the outcomes
of these measurements accelerates prototype development because the time otherwise taken
for manual examination of possibly large amounts of data is saved. This calls for highly
adaptive analysis methods, capable of automatically adapting to changes in the physical
parameters of the prototype device. Given such methods, high quality analysis results can be
achieved, which is mandatory for attributing any deterioration in results quality to a poor
setup of physical device parameters, as opposed to unsuitable processing. Availability of
an automatic analysis process is not only beneficial for accelerating prototype development
during the experimental phase of a microscopy device but is also of high practical value in
everyday lab practice, once the development has been completed.
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1.1 Motivation and Relevance

The PAMONO biosensor [ZKG+10], which is the focus of application in this thesis, is a novel
microscopy technique in development. This prototype development can largely benefit from
adaptive methods as described above. Such methods will be developed within this thesis,
exemplified with respect to the PAMONO biosensor. First of all, to illustrate the relevance of
PAMONO, a short summary of its applications and capabilities will be given now.

The PAMONO biosensor addresses the increasing need for rapid detection of nano-objects,
in particular of biological viruses [EMY+08; MRE09]. Methods for rapid detection of newly
emerging viruses accelerate clinical diagnoses, aid in reducing the costs for health care, and
most importantly combat epidemic spread of viruses [MRE09]. PAMONO is a real-time-
capable method for indirect, optical detection of nano-objects, e.g. intact biological viruses,
in liquid samples. Its capability for virus detection is based on virus-antibody-interactions,
thus it can furthermore be used in testing the capability of newly developed antibodies to
bind their targets, which is applicable in pharmaceutical research.

PAMONO fulfills most of the desiderata for next generation biosensors as identified in
[EMY+08] and [MREOQ9]: It is sensitive to low concentrations of the target nano-objects
[STM+15] and easy-to-operate. By using only commercial off-the-shelf optical components it
is inexpensive. It can be realized as a portable device, enabling Point of Care (POC) usage, e.g.
in remote locations or at the home of patients. Portability furthermore enables deployment
of a network of cooperating biosensor units, which allows monitoring virus prevalence over
large geographic scales [LKD+14]. Finally, PAMONO virus detection is fast: The attachment
of viruses to the sensor surface can be visualized and automatically detected in real-time,
provided that suitable data processing is applied. The algorithmic methods to be developed
throughout this thesis meet up with this real-time capability, i.e. they enable analysis and
visualization of PAMONO sensor data in real-time, while measurements are being taken.

Broader Context

When regarded in a broader context, asking for an automatic method for PAMONO data
analysis means asking for a new, modality-specific method for automated microscopy. With
regard to other, already established microscopy modalities, such specific methods exist,
e.g. [HBR+08; HBR+12; PKC09; YBC+10; ALN+12; WHS+12; TRS+02; 01i02; ZFS+07;
SLN-+09; JZK+07; MSB+13]. A frequent characteristic of the tasks solved by these methods is
the requirement for detecting low-intensity objects of interest in noisy data. This characteristic
is shared by PAMONO data analysis and is also encountered on very different scales, e.g. in
astroparticle physics for astronomical object detection [DE13; RSV+13; VFB+14; DT14;
Ruh13].

Automatic methods often require careful tuning of algorithmic parameters to achieve
the highest analysis quality. Furthermore, in case the method builds on supervised machine
learning techniques, training data is assumed as input. Hence, the effort of manual image
analysis is shifted to parameter tuning and possibly the creation of training data. Particularly
the latter is subjective and involves tedious, time-consuming work [HBR+12], just like manual
image analysis does. However, avoiding subjectivity and the entailed lack of repeatability
of results is one of the desired goals for which automatic analysis methods are used in the
first place [HBR+12; Oli02]. This contradiction alleviates as long as the same modality
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is considered and measurement conditions are kept constant: Time-consuming parameter
tuning and creation of training data have to be done only once, and their results can benefit
all further analyses. Subjectivity in training data creation is less of an issue because the
trained model remains the same over all analyses. Hence it incurs the same subjectivity in a
repeatable fashion, yielding repeatability of results.

If measurement conditions change, however, ensuring high quality analysis results may
require parameters to be re-tuned and new training data to be created, in order to adapt the
analysis process to the new conditions. Changes in measurement conditions are frequently
encountered during prototype development of new sensor technologies like PAMONO. A
desire for methods that can adapt to different experimental scenarios has also been reported
in cell detection [ALN+12]. One class of highly adaptive methods is constituted by machine
learning: Knowledge is abstracted from the training data itself, thus creating predictive
models that are specifically adapted to this training data. In case of supervised machine
learning this entails the need for creating new training data for each prototypical sensor
setup, which can pose a bottleneck. Hence a need for methods facilitating and accelerating
the creation of training data can be identified in reaching adaptivity via supervised machine
learning. Another way of constructing highly adaptive methods is providing a large number
of algorithmic parameters controlling how the data is processed, such that changes in the
physical parameters of the sensor setup can be accommodated by changes in algorithmic
parameters. However, exhaustive manual tuning of algorithmic parameters for every new
sensor configuration examined during prototype development slows down the advancement of
the sensor technique. Manual parameter tuning is tedious if the parameter space is small
and infeasible if it is large. Furthermore, it is considered “more of an art than a science”
[BBB+11] as it is not a systematic approach. Nevertheless, recent improvements of results
in image classification benchmarks were often due to finding better parameters for existing
approaches, rather than better new approaches [BBB+11]. For these reasons, automating the
search for such better parameters is a desirable goal: Reaching this goal means that automatic
algorithms are not only used for avoiding the bottleneck of manual data analysis but also for
avoiding the entailed bottleneck of configuring the algorithms driving the automatic analysis.
This is of particular value if algorithms have to be configured numerous times in order to
adapt to changing measurement conditions, as in sensor prototype development.

Having an automatic and automatically adapting analysis process available during sensor
prototype development can vastly accelerate this development: The impact of changes made
to the sensor setup can be thoroughly studied without the need to manually analyze the
data or to manually adapt algorithmic parameters of the analysis process. Different sensor
setups can be compared, and those most suitable for different purposes can be identified.
Such comparisons largely benefit from the increased repeatability delivered by automation.
Additionally, the analysis process can later be used to analyze the data produced by the final
sensor setup: Once sensor development is completed, a well-tested analysis process is readily
available.

PAMONO Data Analysis

As touched upon above, PAMONO is a prototypical biosensor in development, and the
previous paragraph fully applies to it. Hence, this thesis devises an adaptive microscopy data
analysis process, using PAMONO as its application scenario. The analysis process consists of
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a nano-object detector and a learned model for classifying detector output. It is embedded
in an approach that automatically adapts the arising algorithmic parameters to changing
measurement conditions and that uses machine learning to compute the classifying model that
separates detector output into correct and spurious responses. In the detector, selections are
made among competing algorithms with equivalent input and output behavior, and optimized
parameters for the selected algorithms are determined in order to adapt the detector to the
data and thus to the respective sensor setup. Both is done in a fully automatic fashion,
after a data-driven signal model was seeded, which involves only minor manual effort. The
signal model empirically simulates image formation on the PAMONO sensor and is used to
create large amounts of synthetic ground truth data with respect to which the parameters
are optimized and which serves as training data in learning the classifying model.

Manual analysis of the data produced by a single PAMONQO experiment involves the
examination of a sequence on the order of 4000 images and takes approximately two days per
analyzing person. A bottleneck this severe impedes large-scale experiments, the attainment of
good statistics and enhancing the sensor prototype. In contrast, given algorithmic parameters
and a classifying model, an average application of the automatic analysis process takes time
on the order of seconds: The real-time capability delivered by the PAMONO sensor is retained
by this analysis process. The encompassing approach determining optimized parameters and
the classifying model can be run overnight, with no interaction required. Running such an
optimization is only necessary if measurement conditions were changed in a way that rendered
the previous parameters and classifying model unsuitable. After that, an arbitrary number of
experiments can be analyzed in real-time, until measurement conditions are changed again.
The presented approach neither assumes knowledge about the underlying algorithms and
their parameters, nor about machine learning, making it readily applicable by lab personnel
in everyday lab practice.

One particular challenge pertaining to PAMONOQO data analysis is that the sequences
of images provided by the sensor may exhibit Signal-to-Noise Ratios (SNRs) below two.
Previous approaches to signal detection in comparable data already fail at higher SNRs: All
algorithms surveyed in [CWGO1] fail for SNRs approaching four, while for the best methods
surveyed in [SLN+09], an SNR approaching two is the ultimate limit. In order to successfully
analyze PAMONO data, it is mandatory to push the envelope further by handling SNRs
below two. The analysis process developed in this thesis demonstrates that by optimized
combination of denoising and other image processing methods, nano-objects in PAMONO
data exhibiting a median SNR below two can be detected. This enables finding nano-objects
with diameters down to 100 nm. For comparison, a median SNR below two means that at
least half of the occurring nano-objects are likely to be missed by the best of the algorithms
surveyed in [CWGO01] and [SLN+-09].

In a Nutshell

As a quick summary, the central topics covered in this thesis are the following:

o An automatic analysis process is devised for the data produced by the PAMONO sensor,
which enables biological virus detection.

e Median SNRs below two are handled by this process which allows the detection of
nano-objects with diameters down to 100 nm.
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e The analysis process is embedded into an approach which automatically adapts the
underlying algorithmic parameters and the classifying model to changes in measurement
conditions. One use case of this approach lies in accelerating the advancement of the
PAMONO prototype towards a final sensor setup.

e No expertise concerning the underlying algorithms or machine learning is assumed in
order to operate the developed approach and to conduct analyses with it. This enables
ready applicability in a lab scenario.

1.2 Contributions of this Work

Investigating the central topics listed at the end of the previous section led to a number of
contributions made by this thesis. Large parts of these contributions have previously been
published in the context of peer-reviewed national and international conferences and journals.
The corresponding publications are [SWL+11; SLW13; LST+13a; LST+13b; SLW+14;
SFL+14; STM+15]. The subsequent text lists and summarizes the individual scientific
contributions made by this thesis. Complementary information focusing on the publications
in which these contributions were made is given in Appendix C.

Signal Model for the PAMONO Biosensor. An empirical signal model of the PA-
MONO sensor is devised which describes the formation of PAMONO imagery. It serves as
part of a data-driven method for creating synthetic PAMONQ images with ground truth
information about the contained nano-objects. A small number of manually segmented
examples of the nano-objects to be detected is required to seed the signal model. Then it is
applied to synthesize a large number of PAMONO images annotated with ground truth, with
respect to which automatic parameter optimization and supervised learning of a classifying
model are carried out. The signal model is validated in terms of its suitability for these
two tasks: It is demonstrated that parameters optimized for this synthetic data can be
transferred to real sensor data with only minor decrease in analysis quality. Furthermore, it
is demonstrated that a classifying model learned from this synthetic data also yields high
quality classification of real data.

Analysis Process for PAMONO Data. A two-part analysis process for the data provided
by the PAMONO sensor is devised. The first part is a highly sensitive nano-object detector
which identifies spatiotemporal regions in the data that are candidates for being affected by
nano-object adhesions. This detection encompasses existing and newly developed methods for

o PAMONO-specific image processing (newly developed methods),
o denoising (existing methods),

o time series classification (newly developed methods) and

o segmentation (existing methods).

High sensitivity of this detection is demonstrated. The second part aims at precision: A clas-
sifier process for separating the nano-object candidate regions provided by the detector into
actual nano-objects and spurious detector responses is presented. The central contributions
made in this context are as follows:
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o A set of features is identified which is used in classifying detector results. It contains
features of shape, spatial and spatiotemporal intensities.

e A modular supervised classification process for the resulting data is constructed that
builds on existing machine-learning algorithms.

e The modules and algorithms that perform best on the given data are identified.

The classifying model eliminates spurious detector responses, thus complementing the goal of
high sensitivity pursued by the detector with corresponding precision. The success of this
division into a detector collaborating with a classifier is demonstrated with respect to the
task of counting the nano-objects appearing in PAMONO data.

Automatic Adaptation to Varying Measurement Conditions. The parameters con-
figuring the detector and the employed classifying model are automatically adapted to changes
in measurement conditions and PAMONO sensor setup. This is achieved by the SynOpSis ap-
proach, which integrates synthesis based on the PAMONO signal model into an optimization
of detector parameters and classifying model, which are then used in the ﬁnaranalyﬁ of
the real data provided by the sensor. Configuring the proposed PAMONO data analysis
process by means of SynOpSis yields the first method capable of analyzing PAMONO data
with particle sizes down to 100 nm. This demonstrates empirically that automatic analysis
of PAMONO data is feasible. SynOpSis combines multi-objective parameter optimization
with a parametric image processing pipeline. This pipeline is composed of the nano-object
detector and the classifier which embeds machine learning-based computation of a classifying
model into this optimization. Automatic evaluation of pipeline objectives is enabled by the
synthetic ground truth, with respect to which both, parameters and classifying model, are
determined. No familiarity with the algorithms and parameters underlying the detector
and classifier is required for scientists to benefit from the adaptivity these methods provide.
Furthermore, no experience in optimization or machine learning is assumed. Only synthetic
ground truth is needed, which can be obtained using the signal model discussed above,
requiring a small number of manually segmented examples of the type of nano-objects to be
detected. Hence solely domain knowledge concerning the field of application of the PAMONQO
sensor is demanded for using SynOpSis. This is a huge advantage for practical application in
a lab environment.

Validation. The process proposed for PAMONO data analysis and the SynOpSis approach
for automatic adaptation of its algorithmic parameters and classifying model are validated with
respect to synthetic and real sensor data. Their capabilities and limitations are investigated in
face of PAMONO experiments with varying measurement conditions and increasing difficulty.
Pareto-optimal parameter sets are examined to determine their commonalities in order to
find out what makes a good parameter set and to assess competing algorithms. Predictability
of objective values from parameter sets is investigated. Run times are measured and the
real-time-capability of detection and classification is verified: Analysis results can be computed
and visualized for the sensor operators while measurements are being taken. Overall, the
achieved results are an empirical demonstration of the ways in which image processing and
data analysis can benefit from automatic parameter optimization and machine learning, based
on synthetic ground truth.
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1.3 Organization of the Thesis

The organization of this thesis is as follows. Chapter 2 introduces the PAMONQO biosensor as
the application scenario in which the data analysis to be developed is conducted. It elaborates
further on the capabilities and fields of application of PAMONQO and discusses its underlying
physics. Tightly connected to these physics are the properties of the data provided by the
sensor, and thus the data analysis task to be solved, which is discussed at the end of that
chapter.

Chapter 3 develops the SynOpSis approach on an abstract level: It firstly identifies the type
of abstract detection and classification task that PAMONQO data analysis belongs to and then
presents SynOpSis as a method for solving such tasks. As SynOpSis can basically be regarded
as an extended image processing pipeline undergoing automatic parameter optimization,
literature related to these topics is reviewed. Then the modules for synthesis, detection and
classification are developed abstractly, before they are revisited concretely for the PAMONO
scenario in Chapters 4 to 6. The remainder of Chapter 3 describes the multi-objective
optimization of detector and classifier and the employed techniques for desirability-based
model selection and for performance estimation.

Chapter 4 is the first of three subsequent chapters that concretise the abstract modules of
SynOpSis from Chapter 3, custom-tailoring them specifically for the PAMONO sensor. In
Chapter 4, the creation of synthetic ground truth data is covered, which involves presenting
a signal model for the PAMONO sensor, along with an empirical method for using this signal
model in generating synthetic PAMONQO imagery.

Chapter 5 concretises the detector for PAMONO data analysis: PAMONO-specific image-
and time series processing techniques are presented along with general methods for denoising
and segmentation in the spatiotemporal data provided by the sensor. The parameters of each
method employed in the detector are listed and discussed because they are to be optimized
by SynOpSis.

Chapter 6 presents the modular classifier process used in PAMONO data analysis. First
of all, the features employed by the classifier are depicted, which are extracted from the
output of the detector. Then the modules used in the classification process are described,
encompassing class balancing, feature scale normalization, feature selection and finally the
examined learning algorithms.

Chapter 7 contains the overall evaluation of applying SynOpSis for PAMONO data
analysis. It introduces the employed experimental data and the physical parameters of
the PAMONO sensor that were varied in recording that data. Furthermore, it concretises
the remaining degrees of freedom of SynOpSis that were left open in Chapter 3, in order
to separate the description of the method from the description of its PAMONO-specific
experimental setup. Results are firstly reported for a single PAMONO experiment in order
to illustrate the outcome of one application of SynOpSis. Subsequently, results aggregated
over all experiments are regarded and different variants of applying SynOpSis are evaluated.
Final analysis results are reported per experiment, and the quality of performance estimates,
method specificity and real-time-capability are investigated. Furthermore, the Pareto fronts
of optimized parameter sets are examined, thus determining what makes a good parameter set.
Predictability of parameter set quality is assessed by computing response surface models for
objectives and other measures of quality over parameter space. Finally, the cross-experiment
generalization performance of both, detector parameters and classifying models is evaluated.
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Chapter 8 serves as a conclusion to the evaluation in Chapter 7 as well as to the overall
thesis. Results are summarized and discussed within a broader scope. Directions for future
research, based on the findings of this thesis, are presented.

Each chapter of this thesis builds upon the previous one, hence a linear reading order is
recommended. Readers not interested in the PAMONQO sensor possibly prefer Chapter 3 as it
depicts the SynOpSis approach on an abstract level and abstractly describes the type of task
that can be solved by it. In this case Chapters 4 to 6 may serve as optional exemplifications.
For readers interested in PAMONO, it is recommended to read all chapters in linear order
and to optionally peek ahead from Chapter 3 to Section 7.3, which complements the abstract
depiction of SynOpSis with a PAMONO-specific configuration.
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CHAPTER 2
Biological Virus Detection with the
PAMONO Sensor
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Analysis of the data recorded by the PAMONOQO sensor serves as the central field of
application examined in this thesis. PAMONQO data analysis is the task to be solved, in order
to demonstrate the capabilities of the presented approach. In this chapter, the PAMONO
sensor is presented from three perspectives: Section 2.1 takes an application point of view
and presents some of the capabilities and fields of use of the PAMONO sensor, with a focus
on its primary application, i.e. the detection of biological viruses. Section 2.2 provides a
physical point of view and explains how these capabilities are achieved by exploiting the
Surface Plasmon Resonance (SPR) effect. Finally, Section 2.3 takes a data-oriented point of
view, by describing the data output by the sensor and the desired results to be output by the
analysis approach proposed within this thesis.

2.1 PAMONO Capabilities and Applications

Plasmon-Assisted Microscopy of Nano-Sized Objects (PAMONO) [ZKG+10] is a method
enabling the indirect detection of objects on the nanometer (nm) scale, using equipment from
optical microscopy. Conventional optical microscopy is not suitable for observing nano-objects
directly, due to the following relationship investigated by Mie [Mie08]: The intensity of the
light scattered by an object with a radius smaller than the wavelength of the employed
light decreases in the sixth power of the radius of the object. Therefore, the intensity of
light scattered by nano-objects is by orders of magnitude smaller than for objects on the
micrometer (pm) scale, if visible light is used (wavelength ~ 380 nm to 740 nm). This impedes
direct detection of nano-objects by means of conventional optical microscopy. Furthermore,
even if the nano-objects would reflect /emit a sufficient amount of light, the diffraction limit
discovered by Abbe [Abb73] still limits optical microscopy to a maximum lateral resolution
of » 250 nm, if visible light is used.

The PAMONO sensor enables optical detection of nano-objects by exploiting the Surface
Plasmon Resonance (SPR) effect: An individual nano-object can be indirectly detected by
observing the SPR effect it causes on the micrometer scale. This effect occurs when the
nano-object attaches to the sensor surface and hence its occurrence can be taken as an indirect

9



10 Chapter 2. Biological Virus Detection with the PAMONO Sensor

Figure 2.1: Portable PAMONO Sensor. A prototypical PAMONO sensor [ZKG+10; WGT+10] is shown,
built into a portable case that is approximately 45 cm wide. Processing the sensor data can
be handled by a portable laptop computer in real-time [LST+13a; LST+13b]. Details on the
components of the sensor are given in Section 2.2 and Figure 2.2. Photograph courtesy of Pascal
Libuschewski.

proof for the attaching nano-object. In contrast to the sixth power relation between intensity
and object size as in Mie scattering, the observed intensity of the effect in PAMONO decreases
approximately linearly with object size [ZKG+10]. Therefore, the effect is bright enough to
be detected. Furthermore, its spatial extension is on the micrometer scale, hence enabling its
detection with conventional optical microscopy techniques. These properties make PAMONQO
a new method for bridging the gap between the micrometer- and the nanometer scale in
optical microscopy.

Unlike super-resolution techniques such as Stimulated Emission Depletion (STED) mi-
croscopy [HW94] or Stochastic Optical Reconstruction Microscopy (STORM) [RBZ06] it does
not rely on fluorescence or any markers. The light observed in PAMONO is not emitted by the
objects under observation but is due to SPR effects in the surface around them. This makes
PAMONO more similar to conventional optical microscopy, resulting in comparably low device
cost because common off-the-shelf components can be used. In contrast to conventional SPR
techniques [BSB+04; CKB+05], not only the concentration of nano-objects in a sample can
be estimated but individual nano-objects can be detected because each attachment manifests
as a discrete event on the sensor surface.
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Figure 2.2: PAMONO Sensor and Data. Schematic depiction of the PAMONO sensor (left), recording
a time series of intensity images (center). Nano-objects attaching to the sensor surface (left)
manifest as faint blobs in the spatial domain (center) and as step functions in the temporal
domain (right). The displayed step function in the temporal domain was chosen for illustration
purposes. Signal-to-Noise Ratios (SNRs) observed in real data make it considerably more difficult
to distinguish sensor noise from time series related to nano-object adhesions, cf. Figures 7.1 and
7.2 for more representative example time series. Figure adapted from [WGT+10].

PAMONO can detect any type of nano-object that can be brought to attach to the
sensor surface because the attachment is the constituent ingredient for triggering the SPR
effect. The primary use case of the sensor is detecting biological viruses. In this scenario,
antibodies that are specific to a certain type of virus of interest are used to mobilize the
sensor surface, and the viruses are detected as they attach to the antibodies. In contrast to
non-optical, nano-resolution-capable microscopy like Electron Microscopy (EM), PAMONO
does not require a vacuum, hence intact viruses can be indirectly observed in their natural
surroundings [WGT+10]. The observation can occur in real-time, enabling e.g. monitoring
of the attachment processes or very fast diagnoses. Automatic analysis of the sensor data
can be carried out in real-time as well [LST+13a; LST+13b], which will be covered in this
thesis. The sensor and the required processing units can be realized in a portable device,
making PAMONO a technique for virus detection beyond the laboratory environment, cf.
Figure 2.1. Furthermore, its principle can be reversed by using a defined sample of viruses
and investigating whether or not a newly developed antibody can make the sample viruses
attach to the sensor, hence yielding applications in pharmacology. Selectivity of the method
can be controlled by making different areas of the sensor surface attach different types of
nano-objects: For example different spots of the sensor surface can be coated with different
antibodies, enabling the detection of multiple types of viruses on a single sensor. Virus types
can then be distinguished by their location. PAMONO is, however, not limited to biological
virus detection. It can detect any type of nano-object for which there is a method of attaching
it to the sensor surface. This makes it applicable e.g. in detecting fine dust and particulate
matter in industry or car exhaust.

In summary, PAMONO is a versatile technique for indirectly detecting nano-objects by
means of inexpensive optical microscopy. The sensor, as well as the processing unit enabling
automatic data analysis, can be realized as portable devices, allowing for applications beyond
the confined environment of a laboratory.
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2.2 The Physics Behind the PAMONO Sensor

The physical principles and details behind the PAMONO sensor will be provided in this
section. The order of explanation follows the left part of Figure 2.2, which shows a schematic
depiction of the sensor setup. This setup is a modified Kretschmann configuration [Kre71]
for SPR microscopy. A superluminescent diode emits light through a glass prism upon a
thin gold layer on a glass plate that is fixed to the prism. This gold layer constitutes the
sensor surface. The light reflected due to total internal reflection (details below) is imaged
through a lens upon a 12-bit grayscale industrial Charge-Coupled Device (CCD) camera,
which records a time series of images of this reflected light. The top of the gold layer is coated
with a substance to which the nano-objects of interest can attach, e.g. antibodies that are
selective for a certain virus under observation. The nano-objects are pumped through a flow
cell over the gold layer, and by diffusion an assessable amount of them gets close enough
to the coating to become permanently attached to the surface. When this happens, the
Surface Plasmon Resonance properties in a micrometer scale region around the attachment
site change, increasing the intensity of light reflected onto the CCD. Measurement of these
small increases of intensity provides the foundation of how SPR-based biosensors work.

The physical explanation of the SPR effect causing these increases is as follows [Pat05]:
The light emitted by the diode enters the prism and hits the surface with the gold layer at
an angle that is beyond the critical angle for total internal reflection at the given interface
between a material with higher refractive index (glass prism) and a material with lower
refractive index (liquid in the flow cell). Besides being reflected at the interface, the photons
of the light beam can alternatively excite oscillation of the electrons in the gold layer. Such
an oscillating electron is called a surface plasmon. Hence a photon can either be reflected
towards the CCD, or it can be transformed into a surface plasmon. Every photon becoming
a surface plasmon means that less light is reflected onto the CCD. The ratio of photons
becoming surface plasmons depends on the incidence angle of the light beam with respect to
the gold layer, and the angle maximizing this ratio is called the Surface Plasmon Resonance
angle. As a consequence, the SPR angle is the minimizer of the intensity reflected towards
the CCD, beyond the angle of total internal reflection. Now this SPR angle sensitively
depends on the refractive index of the involved material: A nano-object attaching to the
sensor surface (e.g. a virus attaching to an antibody) causes a local change in refractive index
at the interface, which entails a change in the local SPR angle. If the light hits the interface
at the previous SPR angle, i.e. the minimizer of reflected intensity, any local change in the
SPR angle increases the amount of light reflected from the affected region. This enables
indirect detection of nano-objects attaching to the sensor surface by finding the regions of
increased reflected intensity.

In PAMONO the incidence angle of the light emitted by the diode upon the gold layer is
chosen as the minimizer of the SPR reflectivity curve, cf. Figure 1 in [ZBM+07], thus following
the idea presented above. Hence, any local change in SPR properties causes an increase in the
amount of light that is reflected from the interface to the CCD camera. The spatial extension
of this increase is a micrometer scale blob (despite being the effect of a nanometer scale cause),
therefore its optical detection is possible. On the other hand, the magnitude of the increase in
intensity is only a fraction of the intensity of the background signal recorded by the CCD. If
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this background signal is computationally removed! and the contrast of the result is stretched,
the blobs indicating nano-objects look like those displayed in the center of Figure 2.2. The
magnitude of the effect in PAMONOQO imaging is nevertheless a significant improvement over
direct optical imaging: While the intensity reflected by nano-objects decreases in the sixth
power with object size, due to Mie scattering [Mie08], the effect observed in PAMONO is
related approximately linearly to object size [ZKG+10].

Regarded on a per-pixel level, a nano-object attaching to the sensor manifests as a step
function in the recorded per-pixel time series of intensities, cf. Figure 2.2, right. A sufficient
number of spatially coherent pixels recording a step function at the same point of time serves
as the indirect proof of the attaching nano-object. In areas not affected by nano-objects, only
noise on an approximately constant background is recorded. This is what enables optical,
though indirect, detection of nano-objects in a microscopy device. The principle is summarized
in the acronym: Plasmon-Assisted Microscopy of Nano-Sized Objects (PAMONO). Note
that the time series on the right of Figure 2.2 were chosen for the purpose of illustration.
They do not provide a representative impression of real data: The Signal-to-Noise Ratios
(SNRs) observed in real data typically are lower, such that distinguishing time series related
to nano-object adhesions from those related to empty sensor areas by visual inspection is
considerably more difficult. Representative examples are given in the evaluation chapter, cf.
Figures 7.1 and 7.2.

Proportionality between virus concentration in the sample and the number of attachments
observed via PAMONO has been established by Shpacovitch et al. [STM+15]. Specificity
of the sensor responses to the viruses to be found has been demonstrated in the same work.
Further details concerning the physical principles behind the PAMONO sensor can be found
in [ZKG+10]. A mathematical model of the data provided by the sensor will be presented in
Chapter 4, which will also guide the image processing and classification techniques discussed
in Chapters 5 and 6.

2.3 PAMONO Data and Analysis Task

Conducting a measurement with the PAMONO sensor delivers a time series of images, each
recording the intensity of light originating from the sensor surface in the direction of the
camera. This time series of images can be considered as a spatiotemporal volume of intensities.
Figure 2.3 shows four of these images to which different processing has been applied, which
serves to illustrate the nature of the data. Each column corresponds to one type of processing
and each row corresponds to one of the four exemplary images. In total, the measurement
consists of 4000 images, hence the last row displays the final image. The left column shows the
raw data as it is recorded by the sensor. Comparing raw image 100 to raw image 4000 reveals
no difference that is apparent to visual inspection. What can be observed are interference
patterns on the sensor surface that remain approximately constant over all images and that
dominate the desired signal in the data. Hence, the center column shows differences between
the image indicated by the respective row and the first image in the measurement. In these
difference images, the approximately constant interference patterns are eliminated and the
desired signal is revealed on the same intensity scale as in the raw images of the left column.

! As a lookahead: A model of PAMONO signal formation, including the background signal, is provided in
Chapter 4, and a method for removing the background signal is described in Section 5.2. However, these are
not vital for understanding the current chapter.



14 Chapter 2. Biological Virus Detection with the PAMONO Sensor

(a) Image 100

(b) Image 1000

(c) Image 2000

(d) Image 4000

Figure 2.3: Time Series of PAMONO Images. Exemplary images recorded by the sensor are shown as
raw data (left column), and as difference images between the respective shown raw image and
the first raw image of the series without (center) and with amplification (right column).
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Figure 2.4: Data and Desired Output. For visualization purposes, a highly processed sensor image is
shown, giving an example of the output desired from the analysis process: The goal is to find and
count all nano-object adhesions (marked by circles), without mistakenly counting the structures
that are due to sensing artifacts (marked by rectangles) as nano-objects.

In image 4000, faint blob-like structures are (not easily) perceivable which correspond to
nano-object adhesions. The right column shows the same images as the center column, but
on a different intensity scale: The contrast in all images has been linearly increased by a
factor of five, revealing more and fainter blobs while amplifying sensor noise. The noise is
due to the CCD (chip readout noise [FMO06]) and photon statistics (shot noise [BB00]) and is
aggravated by the derivative-like nature of taking a difference image.

The goal of quantitative analysis of this data is to find the attachments of nano-objects
to the sensor surface by finding their characteristic spatiotemporal signatures, which are the
sets of spatially coherent and temporally coincident step functions described in the previous
section. Figure 2.3 also serves to give examples of these signatures and their magnitudes in
comparison to noise and to the background signal. Since the volume of data is large (e.g. 4000
images with 750 px x 230 px in one measurement) and finding nano-object signatures manually
is slow, subjective, tedious and error-prone [HBR+12; Oli02], automation of this analysis
is desirable. The sought after output of an analysis process is illustrated in Figure 2.4. For
better visualization and hence clarity of presentation, the image has been processed with more
sophisticated methods than the processing described in the context of Figure 2.3. Details of
these methods are presented in Chapter 5. The circles in Figure 2.4 enclose the nano-object
attachments, as observed via PAMONO. Finding all of and only these nano-objects in a time
series of images are the two subtasks constituting the primary goal in the desired automatic
quantitative analysis process. Finding all nano-objects is impeded by the low SNR in the
data?, while finding only the actual nano-objects is impeded by the sensor artifacts marked
by rectangles in Figure 2.4. These artifacts have a temporal signature and intensity that is
similar to actual nano-objects. An analysis aiming at finding all nano-objects is very sensitive,
thus increasing the chance of erroneously reporting artifacts as nano-objects. Solving both
subtasks with sufficient quality enables automatic counting of the nano-objects in the data.
Hence conclusions about the concentration of nano-objects in the sample can be drawn
[STM+15]. Furthermore, by finding individual attachment sites, it is e.g. possible to monitor
differences in the attachment behaviors over several nano-objects and surface mobilizations.

2Figure 2.4 shows an experiment with a rather high SNR for better visualization, while Figure 2.3 gives a
better impression of commonly encountered SNRs.
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Further goals of the analysis process are related to the resource-constrained scenario of
a portable sensor device: The first requirement is that the analysis process must run on a
portable computer, ideally an embedded system. This results in constraints on the allowable
energy consumption of the employed algorithms: The lower the energy consumption, the
more measurements can be done without recharging the battery of the portable device. In
addition to that, it is desirable that the analysis process can be executed in real-time because
then the data can be analyzed and displayed already during measurement. The goals of
low-energy real-time processing on an embedded system are treated in [NLE+15], while the
aspect of real-time capability is also touched upon in Chapters 5 to 7 of this thesis.

The last goal is associated with the aspect of facilitating further improvement and
development of the PAMONO technique: Due to its prototypical state, the sensor setup
described in Section 2.2 involves many physical parameters undergoing variation between
experiments, e.g. the quality of the gold layer, type of light source, wavelength and intensity of
its emitted light, type of camera, distance between sensor and camera, type and magnification
factor of the lens, observed image section, and different buffer solutions in the flow cell. All
these physical parameters can have an impact on the appearance of the images recorded
by the sensor. In order to maximize the quality of the analysis results, a flexible approach
is required that adapts the involved algorithmic parameters to best suit the given physical
parameters in the sensor setup.
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In this chapter, the foundation is built for presenting the methods developed to solve the
PAMONO data analysis task described in Section 2.3. This foundation provides a modular
frame into which the PAMONO-specific components are later incorporated. Section 3.1
gives an abstract description of the PAMONQO data analysis task, hence presenting its
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conception adopted in this thesis. The perspective is problem-oriented, instead of being
application-oriented as in the previous section. This abstract view on the problems involved
in the task leads to Section 3.2 proposing a methodological approach to solving problems
that fit the abstract task description. This approach is denoted the SynOpSis approach
(Synthesis/Optimization/Analysis) because it creates synthetic datasets and uses them in
oﬁmizing a_lgorithms which are subsequently appliedﬁ real data analysis. SynOpSis is
the outer frame into which the application-specific modules for PAMONO data analysis are
inserted. The order of presentation in this chapter, as well as in the rest of the thesis, is
top-down. Hence, Section 3.2 gives an overview of the SynOpSis approach on a high level of
abstraction, while its constituent components are depicted in more detail in the remaining
sections of Chapter 3. As these sections are organized along the workflow of SynOpSis,
Section 3.2 also serves as an overview of this chapter.

3.1 Abstract Task Description

After Section 2.3 gave an account of the concrete task of PAMONQO data analysis, this section
restates that task on an abstract level, to prepare for Section 3.2 introducing the approach
proposed to solve tasks fitting this abstract description. Section 2.3 identified finding all and
only the nano-objects in a time series of images as the central task in PAMONO data analysis.
Talking about this in an abstract fashion requires more abstract terminology:

Terminology 3.1. The term pattern is in the following defined as a region that is a candidate
for containing an object of interest in the data. Candidate regions and hence patterns are
characterized by being salient in an application-specific sense of the term ‘saliency’. The

L. Two classes of patterns can

process of identifying such regions is called pattern detection
be distinguished, and this distinction is defined by their causations: Firstly, a pattern can
be caused by an object of interest. Such a pattern is called a target pattern. Secondly, a
pattern can be caused by a spurious signal that is not associated with an object of interest.

Such a pattern is called a non-target pattern.

Exemplary causes of target patterns are the nano-objects in PAMONQO. Exemplary causes
of non-target patterns are the artifact and background signals in PAMONO. The concrete
task of finding all and only the nano-objects in a time series of PAMONO images can then
be stated abstractly as finding all target patterns in a given dataset and, if given, filtering
out the non-target patterns incurred as “by-catch”. Hence the abstract analysis task can be
divided into two subtasks: The first is a detection task: All target patterns in a given input
dataset have to be detected. Aiming at not missing any target patterns requires a highly
sensitive detector, which in turn might yield, besides the target patterns, a high number
of non-target patterns. The second subtask is a classification task: Its goal is to separate
the set of detected patterns into target and non-target patterns. Hence the overall task is
detecting and classifying a finite number of patterns with (ideally) well-defined and distinct
appearances for the target and non-target class. This is the conception of the abstract task
to be solved as adopted in the thesis.

Figure 3.1 illustrates the abstract task and its relation to PAMONO data analysis. The
input consist of images in which all objects of interest are to be found. A detector finds a set

!The term ‘pattern detection’ is usually defined more broadly, but for consistent terminology, this thesis
employs a more narrow definition.
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Figure 3.1: Abstract Task Description and PAMONO Correlates. The upper part of the figure

displays the abstract conception of the PAMONO data analysis task, as adopted in this thesis.

The overall task is regarded as divided into two subtasks: The first subtask is detection, aimed

at finding the set of all patterns in the data, where a pattern is defined as a region that is a

candidate for containing an object of interest. The second subtask is classification, aimed at

restricting this set to only the patterns caused by actual objects of interest. The lower part of

the figure illustrates these tasks by showing their correlates in PAMONO data analysis. Here

the patterns of interest are caused by actual nano-object adhesions, while those not of interest
are spurious detector responses due to sensing artifacts as seen e.g. in Figure 2.4.

of patterns under the policy that non-target detector responses are permissible, while not
responding to a target pattern, and hence missing an object of interest in the data, is not
permissible. The reason for this policy is that non-target patterns can be sorted out in the
subsequent classification, while missing target patterns can not be recovered. The output of
classification is the set of classified patterns.

Section 3.2 now introduces one possible approach to solve tasks like the one described in
this section. With this approach it is possible to conduct quantitative analysis of PAMONO
data, hence it can be used to solve the concrete task described in Section 2.3.

3.2 SynOpSis Overview

As stated in Section 2.3, the volume of data to be processed within a PAMONQO measurement
is very large, and manual analysis is slow, subjective, tedious and error-prone [HBR-+12;
01i02]. Hence full automation of quantitative analysis is desired. The algorithms to be used
for solving the detection and classification subtasks identified in the previous section operate
in a fully automatic manner, once suitable algorithmic parameters are known. This makes
automatically analyzing a large volume of data equivalent to automatically determining
suitable algorithmic parameters from a possibly large parameter space. Suitability of points in
that parameter space is tightly connected to the physical parameters defining the experimental
conditions in PAMONQO data acquisition: The latter are subject to change due to PAMONO
prototype development, and careful adaptation of algorithmic parameters to changes in
physical parameters is necessary for high quality analysis results. While performing this
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Figure 3.2: Overview of SynOpSis Approach. Real sensor data is used as the input of a Synthesis stage
generating ground truth-annotated training data. The training data is used in an Optimization
stage to automatically find Pareto-optimal parameter sets for a pattern detector and a pattern
classifier. Model selection with desirability functions is applied to determine the most desirable
parameters for both, by running them on synthetic validation data. The performance of detector
parameters and classifying model on unseen real data is estimated by applying them to unseen
synthetic test data. Finally, both are passed to the real-time capable application stage where they
are applied to the real input data, producing the final detection/classification results. Section 3.2
describes this figure in more detail.

adaptation of parameters manually is already more convenient than full manual data analysis,
it provides no information about the estimated quality of the attained results, and if the
parameter space grows larger, its manual exploration is severely aggravated.

In order to attain high quality analysis results and quality estimates in a fully automatic
fashion, an approach of data synthesis and optimization is proposed, which is hence denoted as
SynOpSis (Synthesis/Optimization/Analysis): A Synthesis stage generates synthetic images
mimicking the signal pr_operties of the real input images to be analyzed. The synthetic images
are annotated with ground truth about the target patterns? they contain. This ground truth
is known because the target patterns are created synthetically at defined locations, using a
signal model. Ground truth about the non-target patterns is known implicitly because any

2In addition to that, in case multiple classes of target patterns are to be distinguished, the target patterns
can be labeled with their individual classes. SynOpSis supports multi-class target patterns, however, the
discussion given throughout this thesis is limited to the case of a single target pattern class that has to be
distinguished from the non-target class. Though, where applicable, additional information on multi-class
support is provided in footnotes.
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detected pattern that does not correspond to a ground truth target pattern is a non-target
pattern. Knowing the locations and classes of the patterns detected in the synthetic images
enables the definition and automatic evaluation of objective functions measuring detection
and classification quality. Optimizing these objective functions with respect to the algorithmic
parameters involved in the data analysis process is a method to automatically obtain suitable
points in a large parameter space.

The SynOpSis approach will be presented abstractly in the remainder of this chapter.
Furthermore, the subsequent chapters of this thesis will complement this abstract depiction
by specializing the presented components towards PAMONO, thus separating the concept
behind SynOpSis from the concrete algorithms to be employed in processing PAMONQO data.

Figure 3.2 gives an overview of SynOpSis as a whole and serves as a guide through the
rest of this thesis. The brief description given now follows the flow of data in the figure
from input to output and shortly introduces the components of SynOpSis. In the figure,
rectangles represent data tokens and rounded rectangles represent processing steps. The
input of SynOpSis consists of the real images to be analyzed. Before this analysis takes
place (bottommost part of the figure), the Synthesis stage is run (leftmost part of the figure):
A signal model (cf. Section 3.4) is applied to produce ground truth-annotated synthetic
training data. This data consists of synthetically generated images with target patterns, both
mimicking the signal properties of the real input images. By being synthetically constructed,
location and class of the target patterns are known. Hence an ideal detection and classification
result is available with respect to which the quality of computed detections and classifications
can be evaluated. After the Synthesis stage, the Optimization stage is run (top right part of
the figure). In this stage, the pattern detector (cf. Section 3.5) is run on the synthetic training
images using initial detector parameters. It detects a set of patterns. These patterns are
then annotated with features to be used in pattern classification. The pattern classifier (cf.
Section 3.6) receives as inputs the feature-annotated patterns and initial classifier parameters.
From these inputs it computes a model that classifies the patterns. The detected patterns
and their classes as assigned automatically by the pattern classifier are then compared to
the synthetic ground truth, and the quality of the achieved detection and classification
is assessed by evaluating suitable objective functions based on this comparison. Besides
measuring results quality, these objective functions can also be regarded as measures of
the quality of the algorithmic parameters employed in the detector and classifier. Given
these measures, the parameters are updated in a promising direction of the search space
of detector and classifier parameters, and the loop body is run again (cf. Section 3.7 for
more details on the Optimization stage). After the loop terminates, the set of points in
parameter space that are non-dominated® in objective space is examined to determine the
single most desirable non-dominated point. This is done by computing a desirability index
(cf. Section 3.8) of the objective functions within a statistical model selection (cf. Section 3.9).
Furthermore, a performance estimate is computed by running detector and classifier with the
selected parameters on unseen synthetic test data. This estimate consists of evaluations of
performance measures that are relevant for the analysis task. It estimates the performance of
the given parameters on unseen data and is one of the two outputs of the SynOpSis approach.
Finally, as optimized detector and classifier parameters are known, both are applied to
the real data to be analyzed (cf. Section 3.10): The real sensor images are input to the

3Throughout this thesis, the concept of Pareto-optimality [Deb01] is used to define the point set that
performs best with respect to objective space. This concept is discussed in more detail in Section 3.7.4.
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pattern detector, using the optimized detector parameters, and yielding patterns in the real
data. Features are extracted from these patterns, which are then employed in classification.
The pattern classifier uses a classifying model trained beforehand from synthetic ground
truth. The learning algorithm used to compute the classifying model receives the parameters
determined during the Optimization stage. The computed classification aims at labeling
target and non-target detector responses as such. The classified patterns are output as the
analysis result. For the pattern detector and classifier proposed in the context of PAMONQO
(Chapters 5 to 6), the analysis can be performed in real-time, once detector and classifier
parameters (involving the classifying model) have been determined [LST+13a; LST+13b].
That means the Application stage in Figure 3.2 is real-time capable for PAMONO data
analysis. As long as the sensor setup and the type of nano-objects in PAMONO do not
change, the offline Optimization stage need not be executed again. Hence series of consecutive
PAMONO measurements with unchanged sensor setup and nano-object type can be performed
in real-time and rapid succession.

As can be seen from comparing Figures 2.4 and 3.1, data analysis in PAMONO as described
in Section 2.3 falls into the category of the abstract task description from Section 3.1. Hence
the task has a structure that makes it solvable with SynOpSis. The next section gives an
overview of related work in the field of automatic tuning of algorithmic parameters, as well
as in the field of image processing pipelines. All sections after that follow the flow of the
data in Figure 3.2 and provide more details on each processing step. Finally, Chapters 4 to 6
provide a signal model, pattern detector and pattern classifier that are custom-tailored to the
PAMONO application scenario.

3.3 Related Work

In presenting the literature related to the topics of this work, the same top-down approach as
in the overall thesis is followed. Hence this section starts by firstly regarding the superordinate
topic of automatic tuning of the parameters of given algorithms. Abstractly speaking, this
parameter tuning can be regarded as an outer loop around the image processing pipeline in
SynOpSis (cf. Optimization stage in Figure 3.2). Secondly, literature related to the components
of this image processing pipeline, especially to the pattern detection and classification
components, is discussed, and the relations and differences to SynOpSis and to PAMONO
data analysis are identified.

Automatic Tuning of Algorithmic Parameters

Existing literature on the automatic tuning of algorithmic parameters employs different
terminologies with regard to the same concepts, often depending on the context of application.
Hence this first paragraph introduces the semantics behind the terminology as it is used
throughout the following discussion with regard to all presented works, independent of the
terminology employed in the individual paper. By algorithmic parameters the variables
configuring a given algorithm are denoted. These parameters are often referred to as
hyperparameters in the context of machine learning algorithms. They have to be clearly
distinguished from the data to which an algorithm is applied. A set of parameters encompassing
values for all free parameters of an algorithm is called a parameter set, sometimes referred
to as a configuration of the algorithm in the literature. A parameter set yields a certain
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instance of a given algorithm, enabling it to be applied to its input data. Each parameter can
assume a certain set of values (discrete or continuous), and each such set of values spans one
dimension in the parameter space of the algorithm. Any valid parameter set is a point in
that parameter space. Finding an optimized parameter set for an algorithm is called tuning.
A measure of algorithm performance that is optimized during tuning is called an objective
of that optimization. Running an algorithm for a certain input dataset and parameter set,
followed by measuring an objective is called an evaluation of that objective. For a fixed input
and variable parameter sets, the process of evaluation establishes a mapping between the
parameter space and the objective space, which can have one dimension (single-objective
optimization) or more (multi-objective optimization). In a one-dimensional objective space,
this mapping is referred to as the response surface. Since most of the presented approaches
are designed for single-objective optimization, general discussion uses the singular word
‘objective’, even in contexts where multiple objectives are conceivable.

The methods for tuning algorithmic parameters to be presented now have been divided
into three categories:

1. Model-free methods traverse the parameters space solely by actual evaluations of
the objective to find optimized parameter sets [HHL+09; BSP+02; BYB+10].

2. Meta-modeling methods create a model of the response surface and use it as a proxy
function in traversing parameter space. Predictions by the model can be computed
quickly and can guide the search [BLP10; KKF+11; HHL11; BBB+11; BMT+12].

3. Evolutionary methods maintain parameter sets and their attained objective values
in a population that undergoes simulated evolution to breed new promising parameter
sets [AST09; MMB+14a; MMB+14b].

Model-free methods for parameter tuning attain knowledge about the response surface
solely by actually running the algorithm to be tuned. They do not rely on a model predicting
the objective values for new parameter sets.

ParamILS [HHL+09] is a local search strategy which assumes categorical* parameters. It
randomly searches the finite set of possible values of a single parameter until the objective to
be optimized improves, and then greedily continues this procedure with the next parameter
until convergence to a local optimum. This local optimum is then perturbed in parameter
space to enable escaping from locality and the procedure is repeated. ParamILS can be used
in optimizing single objectives over categorical parameters and has been successfully applied,
among others, in configuring the CPLEX solver with 63 parameters.

F-Race [BSP+02] is representative of the class of racing approaches [MM97]. It assumes
that a finite set of candidate parameter sets has already been sampled from the parameter
space (or that the parameter space itself is finite). It selects the best-performing parameter
sets from the sample by successively eliminating less promising candidates. The latter are
identified by a Friedman test [Con99], once statistical evidence has been collected for their
significantly worse performance in comparison to the other parameter sets. Evidence is
collected over multiple input datasets, i.e. F-Race furthermore assumes the possibility to
sample an arbitrary number of dataset instances from a distribution that is representative
of the actual datasets to which the algorithm will be applied. Due to the fact that F-Race

“Categorical variables can assume values from a finite set that need not be ordered. An example of such a
set is {red, green, blue}.
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assumes a finite number of candidate parameter sets, in order to apply it within the PAMONO
scenario, where the parameter space consists of 28 to 31 binary, integer and floating point
parameters, the problem is shifted to finding a set of promising candidates for racing.

Iterated F-Race [BYB+10] is an extended version of F-Race that can be used to address
this issue: It executes F-Race in an iterative fashion, where the racing candidates in each
iteration are sampled from the full parameter space, and sampling is biased towards regions
containing parameters that performed well in previous iterations. Implementing a search
strategy that is guided by previous results takes iterated F-Race conceptually closer to
model-based approaches because known results are used to make forecasts about the behavior
of the objective function over the parameter space. However, the usual notion of model-
based approaches involves the explicit construction of a so-called meta-model, which will be
explained in the following.

Meta-modeling methods, in contrast to model-free methods, do not traverse the param-
eter space by actually running the algorithm for evaluating the objective to be optimized, but
by using a surrogate function that is designed to approximate the objective. This surrogate
function is called the meta-model (or response surface model [JSW98]). Its purpose is to
capture the relation between points in parameter space and the associated objective value
with respect to which the parameters are optimized. In contrast to running the actual
algorithm and obtaining an exact evaluation of the objective, the meta-model is used to
predict the objective value, which is faster than an exact evaluation. Hence the meta-model
can guide the search through parameter space by enabling many objective predictions in a
fast manner, which is used to identify a promising candidate parameter set. Once the most
promising candidate parameter set has been found, the actual algorithm is evaluated with this
parameter set, and the resulting exact objective value is used to update the meta-model. Each
update improves its fit to the actual response surface, the entirety of which remains unknown.
However, the mapping between parameter space and objective values is approximated by this
response surface model. The update procedure makes meta-modeling inherently sequential: In
each iteration, the newly evaluated point in parameter space helps improving the meta-model
by being incorporated as an update. The meta-model-guided optimization procedure is
iterated until a selected stop criterion is fulfilled.

The Sequential Parameter Optimization Toolbox (SPOT) [BLP10] is a meta-modeling
approach using linear regression to model the response surface. Kriging and tree-based
regression [HTF09] are also supported to this end. The authors of SPOT see its main field of
application in tuning the parameters of metaheuristics, e.g. Evolutionary Algorithms (EAs).

Konen et al. [KKF+11] build on SPOT and use it in tuning the parameters of a generic data
mining process template. They compare the results attained by SPOT to those by three other
optimization methods: Latin Hypercube Design (LHD) [MBC79] is considered as a baseline
comparison. Since the parameters of the data mining template are numeric, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [Kel99] algorithm® is applied as a representative of local
non-evolutionary numerical optimization. The more recent Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [Han06] is used as the third competitor, representing non-
local evolutionary numerical optimization. The benchmarks examined with the data mining
template are the 2007 and 2010 editions of the Data Mining Cup [Prul5] and appAcid

® Among other optimization algorithms, BFGS is briefly summarized in Section 3.7.1.
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[WGS+10]. Results are that SPOT ranks best in tuning the template, followed by the best
LHD results, while average LHD performance is far worse. CMA-ES ranks third, and the
local BFGS strategy is the worst competitor. As a summary, Konen et al. demonstrate the
success of optimization in automatically tuning the parameters of a generic template for data
mining. This relates to the classification subtask in SynOpSis, which is realized similarly.

Hutter, Hoos, and Leyton-Brown [HHL11] propose a meta-modeling approach that uses a
Random Forest regression [Bre01] to model the response surface. Random Forest regression
yields three benefits: Firstly, categorical parameters are supported in addition to numerical
parameters. Secondly it can integrate multiple dataset instances into one meta-model by
incorporating instance-related features to the forest. Thirdly, Random Forest regression
provides not only an estimate of the objective for a given parameter set (mean value over the
regression tree outputs), but also the uncertainty of this estimate (derived from the variance
over the regression tree outputs). This information is exploited in the search for promising
candidate parameter sets: Candidates are found by maximizing Expected Improvement (EI)
[JSW98] over the incumbent (i.e. the current best) parameter set. EI is high for regions with
good objective values and for regions with high uncertainty. It hence trades off searching in
known good versus unknown regions (exploitation versus exploration), while regions known
to be bad are not examined.

Bergstra et al. [BBB+11] apply meta-modeling in optimizing image classifiers based on
Deep Belief Networks (DBNs) [LEC+07; HOT06]. The approaches proposed in the paper
can handle conditional parameters, i.e. parameters which are only relevant if some other
parameters take certain values. For example, if a boolean parameter toggles execution of a
sub-algorithm, the other parameters of this sub-algorithm are only relevant if its execution
is enabled. One prediction, based on 200 samples in the meta-model, is reported to take
10s, respectively 150s, depending on the type of underlying response surface model. For
PAMONO, one actual function evaluation takes on the order of 20s to 50s for typical
input sizes, exploiting the parallel processing capabilities of the Graphics Processing Unit
(GPU) [LST+13a]. Hence, predicted function values taking 10s to 150s provide no gain.
Furthermore, due to sparsity of good points in parameter space, considerably more than 200
samples are required to obtain a good response surface model. This further increases the
time needed for predictions.

For further reading, Bischl et al. [BMT+12] provide a survey of meta-modeling methods
applied within evolutionary optimization. Besides that, their work presents a method for
assessing the accuracy of a meta-model. Furthermore, meta-model selection and tuning of
the parameters of a meta-model are discussed. This wraps parameter optimization in an
additional meta layer with its own parameters. While this kind of meta layer is not considered
in SynOpSis, model selection and parameter tuning are considered, even though this happens
one layer below. The section named “Common Pitfalls, Recommendations, and Statistical
Properties” is a recommended reading for every layer of statistical modeling and machine
learning in designing a data analysis process.

Evolutionary methods for parameter tuning combine some of the characteristics of
model-free and meta-modeling methods. Nevertheless, they are not a hybridization of
those approaches. Evolutionary methods share the following property with meta-modeling
approaches: Knowledge from previous evaluations of the objective enters into the search
for new promising candidate parameter sets. However, this is realized in a model-free
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fashion, i.e. no explicit model of the response surface is constructed. Instead, evolutionary
methods simulate the mechanisms driving natural evolution: Parameter sets assume the role
of individuals that compete against each other in terms of objective values. The winners in
this competitive selection process mate and exchange parameters. This is where knowledge
from previous evaluations of the objective enters: Parameter sets that are known to perform
well are recombined to form (hopefully) better parameter sets via crossover. Furthermore,
new individuals can be generated by randomized mutation of parameters, i.e. a parameter
is assigned a new value, randomly drawn from a defined distribution. More information
on evolutionary methods will be given in Section 3.7. In-depth details can be found in the
literature [Deb01; Luk13].

Ansétegui, Sellmann, and Tierney [AST09] address tuning of solvers for the Propositional
Satisfiability Problem (SAT) by means of a Gender-Based Genetic Algorithm (GGA)S. Tt
divides the population of all individuals into two genders, of which only one gender is subjected
to selection pressure: Only the top x percent of individuals of that so-called competitive
gender are allowed to mate. In the so-called noncompetitive gender, all individuals are
allowed to mate. This is done with a randomly assigned partner from the top x percent
in the competitive gender. Mating is only carried out between different genders, and the
offspring is randomly assigned one gender. The paper empirically shows that making the
genetic algorithm gender-based improves solution quality and reduces the number of necessary
objective evaluations in minimizing three analytical toy functions, as well as in tuning several
SAT solvers.

In their two-part paper, Mukhopadhyay et al. [MMB+14a; MMB+14b] specifically address
data mining algorithms as a field of application for evolutionary methods. Data mining
algorithms often pursue conflicting goals that can be formalized as opposing objectives for
optimization, which is why the paper focuses exclusively on Multi-Objective Evolutionary
Algorithms (MOEAs). While the scope of application of MOEAs in that paper exceeds’
using them for tuning existing algorithms, successful approaches in tuning the parameters of
classification algorithms are surveyed. These include applications with severe class imbalance®,
which benefit particularly from multi-objective optimization because additional objectives
penalizing misclassification of minority class examples can be considered.

Image Processing Pipelines

While the previous paragraphs primarily addressed work related to the Optimization stage in
Figure 3.2, which can be regarded as an outer loop governing offline computation in SynOpSis,
the following paragraphs will cover work related to the inner components of that loop, i.e.
to the algorithms to be tuned. As according to the previous sections, the main algorithmic
components requiring tuning are a pattern detector, finding candidate locations for objects of

SGenetic algorithms are the most common kind of evolutionary methods. Variables to be optimized are
represented as genes in a simulated process of evolution [Deb01].

"The literature surveyed by Mukhopadhyay et al. covers using MOEAs for feature selection and classification
(part 1 of the paper [MMB+14a]) as well as for clustering, association rule mining and further data mining
problems (part 2 of the paper [MMB+14b]).

8 A classification problem is considered imbalanced, if one of the classes is severely outnumbered by another
class. This not only causes problems for most learning algorithms but also deteriorates the usefulness of
frequently employed performance metrics such as Accuracy. For further information on these issues, cf.
Section 6.3, as well as [HG09] and the references therein.
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interest in the input images, and a pattern classifier, sorting out spurious detector responses.
One or both of these components frequently occur as parts of image processing pipelines.
Many image processing pipelines fulfilling tasks similar to PAMONQO data analysis are found
in the following fields:

1. Cell detection is the task of finding image pixels that belong to biological cells. This
task has been tackled for a variety of microscopic modalities and data dimensions
[HBR+08; HBR+12; PKC09; YBC+10; ALN+12; WHS+12].

2. Particle detection on the micrometer- and nanometer scales is a more general
task, where the objects of interest are not limited to biological cells. However, many
approaches in this field aim at detection of constituent parts of such cells, i.e. even
smaller entities are searched. Due to the resolution limit [Abb73] as discussed in
Section 2.1, this often boils down to finding blob-like patterns or other approximations
of the Point Spread Function (PSF) [NW10] of the optical system [TRS+02; Oli02;
ZFS+07; SLN+09; JZK+07].

3. Other image processing applications related to SynOpSis tackle detection of objects
on larger scales, e.g. tumors [MSB+13] or galaxies and stars [JT81; MSB95].

Hence the following discussion is divided into these three parts. The uniting characteristic
of the data is that objects of interest often cover only a few pixels and exhibit a very low
Signal-to-Noise Ratio (SNR).

Cell detection makes up a large part of the related work concerning image processing
pipelines. It relates to the field of cell biology, and like PAMONQO data analysis, its applications
demand for automatic processing of microscopy images because manual evaluation of acquired
data becomes an increasingly severe bottleneck, impeding large-scale experiments. Different
modalities of cell microscopy and differing goals of analysis spawned a very diverse landscape
of methods for solving the individual analysis problems [WHS+12]. A selection of these
methods will be presented now, with a focus on how detection and, if given, classification are
realized by each one.

Han et al. [HBR+-08] divide the task of distinguishing multiple classes of cells in histological
slices into detection via watershed segmentation [VS91] and classification via machine learning:
Several weak Haar-based classifiers [VJ01] are cascaded via boosting [HTF09] to build one
strong classifier. The individual classifiers are supervised, and a large amount of training data
(about 500 to 1300 examples per class) must be manually segmented in order to obtain a good
boosted classifier. The method shares with SynOpSis the use of separate images for training,
validation and testing, to be described in the context of model selection and performance
estimation, cf. Section 3.9. In contrast to SynOpSis, the images used for training are not
synthetic and must hence be manually annotated with ground truth information.

Later [HBR+12], Han et al. moved from the cascaded Haar ensemble to Support Vector
Machine (SVM) classification [MMR+01] using Laplace edge features [RW95]. The approach
is reported to generalize well over cell type, cell scale and histological staining technique.
Detection is realized by the classifier: A sliding window is used to cut out candidate regions
from the input images and the SVM classifier predicts, whether the region corresponds to
a cell or not. The SVM is optimized by conducting a grid search over its misclassification
cost C' and the v parameter in the employed Radial Basis Function (RBF) kernel. The paper
mourns the lack of a systematic approach to configure algorithmic parameters beyond those of
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the SVM, hence connecting it to SynOpSis which is proposed as such a systematic approach
to fill that gap.

Pan, Kanade, and Chen [PKCO09] present a method that shares with SynOpSis the division
into detection and classification. Detection is realized in three steps: Firstly, local fluctuation
energy of the image is computed as summed Laplacian filter responses at different scales
and orientations, and candidate regions are obtained where this energy exceeds a certain
threshold determined from training data. Secondly, the original input image is masked
with the regions from the first step, and among the remaining pixels, local minima® are
determined as candidate cell points. Thirdly, point locations are refined in a procedure similar
to mean-shift [CMO02], to make them coincident with perceived cell centers. After detection,
the points are classified on the basis of, amongst others, Histogram of Oriented Gradients
(HOG) features [DT05]. An SVM classifier MMR~+01] with RBF kernel is used to distinguish
points located within cells from those located on image background. The overall approach
is claimed to generalize well over different datasets (e.g. different cell types or modalities
of microscopy) without the need for tuning algorithmic parameters. However, it requires a
complete manual segmentation as training data for each type of dataset.

Yin et al. [YBC+10] classify cell images acquired via phase contrast microscopy and
differential interference contrast microscopy on the pixel level. Each pixel is classified by a
bag of local Bayesian classifiers, and the final decision is computed by a mixture-of-experts
model, that aggregates classifier votes with weighting functions depending on the inputs to be
classified, hence allowing to define which classifier is the more dominant expert in which part
of the input space [JJIN+91]. Making classifier weights in ensemble aggregation depend on
the input data to be classified contrasts with boosting approaches [FS97; JZK+07; HBR+-08]
where the weight of a classifier depends on its performance on the training data. The local
expert classifiers in the approach by Yin et al. are computed as follows: For each feature (e.g.
intensity, gradient on multiple scales), a clustering of local feature histograms from random
positions in the image is computed. Then one Bayesian expert classifier is formed from each
found cluster center. Priors and likelihoods can be inferred from the training data, and the
posteriors can be formed using Bayes’ rule. After training, classification takes 50s for a
1.4 Mpx image, ruling out this approach for real-time application in the PAMONQO scenario.

Arteta et al. [ALN+12] detect cell region candidates via Maximally Stable Extremal
Regions (MSER) [MCU+-04]. Detected regions are classified by a structured SVM [THJ+04]
rewarding a one-to-one correspondence of detected regions to the dot annotation supplied
by the user as training data. The SVM works on 92-dimensional feature vectors containing
histograms of intensity and intensity difference between the border of a region and its
surroundings, a shape descriptor of the region and its area. While this method is demonstrated
to generalize over three modalities of microscopy, it takes 30 seconds for processing a
400 px x 400 px image on an Intel® Core" i7 CPU and is hence not applicable if real-time
data analysis is desired.

Wienert et al. [WHS+12] aim at minimizing the amount of a priori information necessary
for an analysis, for the sake of reducing bias towards cells with “regular” morphology. The
main benefit is that cells with more irregular morphological features, e.g. malignant cells
in tumors, can be detected more reliably. The method employs closed-contour-tracing
and subsequent classification of contour-related features. In order to classify irregularly

“The cells considered in [PKC09] are darker than the background.
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shaped cells correctly, the utilized features are invariant to the morphological variations in
question. Nevertheless, the final processing step, separating cell nuclei from background
detector responses, relies on features caused by the Haematoxylin staining of the cell nuclei,
thus restricting generality of the method. Processing time for a 400 px x 400 px image on a
“standard PC” is reported to be 0.39s, which is » 77 times faster than [ALN+12] but still too
slow for processing PAMONO data in real-time.

Particle detection on the micrometer- and nanometer scales is another field that
provides work related to SynOpSis. Most papers in this field are closely related to cell
detection because components of cells in differing modalities of microscopy are the objects of
interest. The difference, however, to detection of whole cells, is that in many cases, features
like textures and contours can not be successfully applied, due to the very low size of the
particles of interest. This small size in combination with the resolution limit [Abb73] discussed
in Section 2.1, turns most of these detection tasks into finding blob-like patterns or other
approximations of the Point Spread Function (PSF) [NW10] of the optical system. Hence, in
the following discussion, the particles to be detected will be referred to simply as blobs, i.e.
by their appearance in the images. A further common characteristic in this context is the
very low Signal-to-Noise Ratio (SNR) in the input [JZK+07].

Thomann et al. [TRS+02] tackle a problem demonstrating many of these aspects: The
task is fluorescent tag detection in 3-D super-resolution microscopy. The blobs to be found
are very small (e.g. 7px x 7px) compared to the image resolution and their appearance is
dominated by the PSF of the optical system, approximated by a Gaussian, while the SNR is
low. Detection of candidate blobs is carried out by thresholding a feature map integrating
intensity and curvature information, cf. also Section 6.2. Super-resolution localization is
obtained by fitting a Gaussian mixture model to the detected blobs, reflecting the prior
knowledge that the signal consists of superimposed variants of the Gaussian-like PSF of the
optical system.

Olivo-Marin [O1i02] also works on fluorescence images and follows the goal of finding small,
bright blobs. His method uses the & trous wavelet transform [Mal99] of an input image, to
represent it in an undecimated multiscale space. In that space, denoising and blob detection
are conducted. For detection, the detail coefficient planes are multiplied, and local maxima
are searched in the product. This search exploits the result that local maxima that are due
to additive Gaussian white noise do not propagate across detail coefficient planes, while local
maxima that are due to actual discontinuities in the image (e.g. edges or blobs) do [MZ92;
JS97; JB99]. However, this method was reported to perform worst, by a large margin, on
low SNRs images, in the 2009 blob detection survey by Smal et al. [SLN+09], which will be
discussed later in this paragraph.

Zhang et al. [ZFS+07] propose a method that can also be used to detect blobs in
fluorescence microscopy, but their focus lies on a denoising method to facilitate this detection.
Their denoising strategy explicitly addresses the Mixed-Poisson-Gaussian (MPG) nature of
fluorescence microscopy, which results from a mixture of the Poisson noise (shot noise) due
to photon count statistics [BB00] and the Gaussian noise due to sensor readout [FMO06]. The
MPG nature of an input image is alleviated by transforming it to a near Gaussian process
using a multiscale Variance Stabilizing Transform (VST), which extends the Generalized
Anscombe Transform (GAT) [SMB98] by a post-processing with undecimated isotropic
wavelets [SMB98]. The “Gaussianized” coefficients are then denoised by increasing their
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sparsity using an iterative optimization scheme. Smal et al. [SLN+09] report competitive
results for the detector part of this method which is based on zeroing both, approximation
coefficients and the coefficients deemed insignificant by the denoising step. Computation
times are not reported, but the iterative optimization scheme, involving steepest descent, as
well as forward and backward wavelet transform in each iteration, hints at unsuitability for
real-time applications like PAMONO.

The already mentioned work by Smal et al. [SLN+09] gives a survey on low SNR blob
detection involving, among others, the three previously discussed unsupervised methods
[TRS+02; 0Oli02; ZFS+07]. Beyond those, the survey also examines approaches involving
supervised machine learning and reveals that these are superior to unsupervised methods if
the SNR is very low. This advantage, however, decreases with increasing SNR. The examined
machine learning methods are the work by Jiang et al. [JZK+07] and a variant of that, using
Linear Discriminant Analysis (LDA) [HTF09] as the classifier.

In the original version, Jiang et al. [JZK+07] use Adaptive Boosting (AdaBoost) [FS97]
as the classifier. This is done in the context of detecting clathrin-coated pits within cells.
Just like in the previously discussed cell detection algorithm by Han et al. [HBR+08], the
employed features are based on the seminal work by Viola and Jones, originally developed for
face detection [VJO01]. Jiang et al. argue that intensity alone can not capture the information
necessary to successfully classify the very small blobs to be detected, and they see the
advantage of Haar features in their ability to simultaneously capture information about
intensity, shape and scale of the underlying objects. The good performance of this method,
especially in comparison to unsupervised methods in the presence of low SNR, as reported in
[SLN+09], makes supervised machine learning an interesting approach for PAMONO data
analysis that will be investigated in Chapter 6.

Other image processing applications that are related to SynOpSis deal with objects
of interest that reside on larger scales. A selection of methods applied in these contexts will
be given now.

The first application is tumor detection in Automated Whole Breast Ultrasound (ABUS)
images. To this end, Moon et al. [MSB+13] propose a multiscale blob detection based on
analyzing the Hessian of the ABUS images. Hence, similarly to [TRS+02], local curvature of
intensity is used as a measure of “blobness”. Before Hessian approximation, a speckle noise
reduction is carried out to address artifacts inherent to the ABUS method. Like SynOpSis,
this approach firstly aims at not missing any pattern that is a candidate for an object of
interest (tumor), followed by classifying the candidates into true and false positive detector
responses (TPs and FPs). In candidate detection, all tumors are detected (Recall = 1) at
the cost of many!® FPs. Then a threshold on a logistic regression [HTF09] estimate of
tumor likelihood is applied to classify the candidates, trading off Recall for fewer FPs!! in
a ten-fold cross-validation. The employed features in this classification were derived from
the Hessian-based blobness measure used in detection, complemented with features of local
intensity distribution and morphology. Computation time is reported to be 13 min per image
and thus too slow for real-time analysis. Calculation of the blobness feature can be accelerated
by exploiting the parallel processing capabilities of GPUs.

10An average of 1044.89 detector responses versus a maximum of 3 tumors per dataset is reported.
1 The number of FPs varies, depending on the achieved value of Recall, but it is small enough for manual
post-classification in the context of Computer-Aided Detection (CADe) by medical experts.
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While finding tumors already is a task residing on a larger scale than identifying cells or
their constituents, the superordinate problem of automatically detecting objects of interest
with a certain appearance in digital images not only arises in medical applications, but also in
very different scientific disciplines operating on yet considerably larger scales, e.g. astronomy.
Despite the large difference in scale between the previously discussed fields of application
and astronomy, the problem to be solved still fits into the abstract task description from
Section 3.1: Objects with defined appearances, that often cover only a few image pixels,
are to be detected and classified, while their intensity is rather small in comparison to
background noise (low SNR). Most of these aspects can immediately be seen when looking at
the title of the work by Jarvis and Tyson [JT81]: Faint Object Classification and Analysis
System (FOCAS). The input of FOCAS are digitized astronomical plates, and the task
to be solved is computing histograms that count the number of stellar objects for ranges
of intensity magnitudes. This task involves a classification subtask because stars have to
be distinguished from galaxies of the same intensity magnitude. Furthermore, these two
classes of interest have to be separated from spurious noise detections due to dust, lint and
adverse properties of plate emulsion. Separating these three classes becomes more difficult
for decreasing magnitudes of the galaxies and stars. FOCAS, like most previously discussed
methods for cell and particle detection, shares with SynOpSis the division of the task into
detection and classification. Detection is carried out by thresholding a filtered version of the
original input image. Classification employs as features the moments of intensity and shape
[Hu62| of the detected object candidates, along with template matching-based and other
application-specific features. An interactive training procedure of a preliminary classifier is
carried out by visually inspecting the scatter plot matrix of the seven-dimensional feature
space, and manually picking separating curves for each combination of two distinct features,
which are then assembled to form a separating hypersurface in the original feature space.
Then a clustering is carried out in feature space on the unclassified detected points, and the
preliminary classifier serves to determine which cluster centers correspond to which class.
Hyperellipsoids are then fitted around the clusters, the union of which defines the final
decision hypersurface. This process has to be done separately for each astronomical plate.
While being outdated and rather empirical, this method very well illustrates the need for
automation and systematization of image processing and object classification processes, as
covered by SynOpSis.

Murtagh, Starck, and Bijaoui [MSB95] present a more general framework for astronomical
image processing that uses undecimated wavelets to solve a variety of tasks in a multiresolution
setting. Among these tasks are image denoising, restoration, compression and object detection,
all of which use the results of an a trous wavelet transform [Mal99] of the input image. The
denoising part can be regarded as a methodological ancestor of [ZFS+07] which was already
presented in the context of the micrometer- and nanometer scales: A VST is used to
“Gaussianize” the MPG process provided by the image sensor, and subsequently wavelet
coefficients that are deemed noise-related are zeroed in an iterative denoising scheme. The
detection process, on the other hand, can be regarded as a methodological ancestor of [Oli02]
because it examines the multiresolution representation of an input image in a scale-by-scale
manner: FEach scale deeming a pixel significant votes for the pixel containing an object of
interest. Scale-weighted summation of the per-pixel votes, followed by thresholding, yields
a binary mask of candidate object pixels. This mask is then post-processed by applying
morphological opening [GW07] two times to remove small ridges. By being closely related to
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two works already presented in the context of detecting objects on the micro- and nanometer
scales, the astronomical image processing framework by Murtagh, Starck, and Bijaoui
illustrates the success of methods in denoising and detection across application boundaries
and, more importantly, across a large difference in scale of the objects of interest.

SynOpSis and PAMONO in the Context of This Related Work

Putting SynOpSis and PAMONQO into the context of the presented related work can be divided
into the same two aspects as the presentation in this section. SynOpSis as a method belongs
into the context of Automatic Tuning of Algorithmic Parameters, while PAMONO as
the application case belongs to the context of Image Processing Pipelines, containing
the algorithms, the parameters of which are tuned by SynOpSis.

This thesis applies parameter optimization to an image processing pipeline for PAMONO
data analysis, used as an example. In the related work presented in this section, parameter
optimization was demonstrated to be successful in application fields like optimizing meta-
heuristics, solvers for NP-complete problems like SAT, and for data mining. Image processing
pipelines frequently exhibit numerous parameters that heavily influence the quality of the
attained processing results. A lack of automatic and systematic tuning procedures for these
parameters was identified, the resolution of which was considered a desirable goal [HBR+12].
The contributions of this thesis can be divided into two central aspects: Firstly, the thesis
combines automatic parameter optimization with a parametric image processing pipeline
and demonstrates the success of applying the former to configure the latter. Secondly, it
devises that image processing pipeline, which is the first analysis process to successfully
analyze PAMONO sensor data with object sizes down to 100nm. By doing so, the thesis
alleviates two major bottlenecks in the practical application of the PAMONO technique:
The first bottleneck is manual analysis of several thousands of images per measurement,
impeding large-scale studies and introducing subjectivity. This bottleneck is targeted by
the automatic image processing pipeline, which gives rise to the second bottleneck: The
pipeline has many algorithmic parameters enabling its adaptation to the variable physical
parameters of the sensor prototype. Manually finding suitable values for the algorithmic
parameters is still subjective, and due to the large parameter space it can become even more
tedious than manual data analysis. SynOpSis targets this second bottleneck by automatic
parameter optimization. With that optimization it systematically integrates data synthesis,
pattern detection, pattern classification, model selection and performance estimation in a
unified framework. Regarded abstractly, this framework reflects the commonalities of the
class of tasks characterized in Section 3.1. Adapting SynOpSis to another such task (e.g.
a different imaging modality, input dimension or target object class) means replacing the
individual modules for synthesis, pattern detection and classification, while the framework
can be reused.

The remainder of Chapter 3 describes the exchangeable modules of SynOpSis in an abstract
fashion (Sections 3.4 to 3.6) and gives details on how parameter optimization, model selection
and performance estimation can be conducted, and how the results of these procedures are
applied in analyzing the real sensor input data (Sections 3.7 to 3.10). Chapters 4 to 6 then
develop the concrete realizations of the abstract modules for synthesis, pattern detection and
classification, targeting PAMONO data analysis. While the related work presented in this
section primarily focused on SynOpSis as whole and on a broader context of kindred image
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processing pipelines, those chapters provide more specific related work, where the peculiar
subproblems of PAMONO data analysis are tackled.

3.4 Synthesis Stage

Synthesis is the first stage to be executed in SynOpSis, cf. left side of Figure 3.2. It uses
a signal model to generate a synthetic dataset of images for which ground truth pattern
locations and classification are known. Defining a signal model is application-specific: A
concrete example for PAMONO can be found in Chapter 4, while in the following, the
properties required for such a model, and the role of synthesis in SynOpSis are depicted
abstractly.

3.4.1 Signal Model

The purpose of the signal model in SynOpSis is generating synthetic images for which ground
truth pattern locations and classification are known. This ground truth is used to define
automatically evaluable objective functions measuring the quality of data analysis results.
Having a method to assess analysis quality is equivalent to having a method to assess the
quality of the algorithmic parameters employed in the analysis. This in turn enables automatic
determination of suitable algorithmic parameters by optimizing the objective functions with
respect to them.

A synthetic signal can, by construction, easily be annotated with ground truth information
because the target patterns'? are created by the model. The key requirement for the signal
model is that it must mimic the real sensor data to be analyzed in such a way that processing
parameters that work well on the synthetic images also work well on the real data, and
furthermore, that a classifying model learned from the synthetic images, also classifies the real
patterns well. To indicate this fact, the signal model in Figure 3.2 receives real images recorded
by the sensor as input: It must as accurately as possible mimic the signal properties of the real
sensor data to be analyzed. This goal may e.g. be reached by a physical simulation [MMB+05;
WSP+10] that is based on signal properties found in the real data, or by data-driven synthesis
[Lea06; SSK+13; SLW+14] creating synthetic data from observed real data.

When the physical parameters of the sensor are modified during different experiments
(e.g. in sensor prototype experimentation and development) and if these modifications change
the properties of the recorded real signal, these changed properties must be captured by the
model in order to be adequately reflected within the signal computed in the Synthesis stage.
The signal properties (e.g. noise level, irradiance, focus) of the synthetic signal must be as
close as possible to the real sensor data to be analyzed. This is due to the role of the synthetic
signal in SynOpSis: Optimized parameters for pattern detection, pattern classification and
the predictive model classifying the patterns are derived from it. The better the signal model
mimics the real data, the better these results transfer to the real data.

Applying the signal model forwardly to generate a synthetic, ground truth-annotated
dataset is its primary purpose in the context of SynOpSis. If the employed signal model
has the property of explaining image formation, it may serve a further purpose when the
backward direction of image formation is regarded: The inverse problem of separating the

12111 case multiple classes of target patterns are to be distinguished, all these classes must be represented in
the synthetic data.
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individual components contributing to the overall image can be facilitated by considering the
signal model. For example a separation of the desired signal from noise and artifact signals
may be desired. In such contexts, the signal model may regularize the inversion of the image
formation, as e.g. in constrained least squares filtering [DK77]. More abstractly speaking, the
signal model may also be used to guide image processing.

3.4.2 Synthetic Ground Truth Patterns and Classification

Besides synthetic images, a synthetic dataset must contain ground truth about all information
to be provided by the pattern detector and classifier because that information is needed for
comparison with detector and classifier results within the Optimization stage in Figure 3.2.

For the detector, ground truth locations of all target patterns in the synthetic images must
be known, whereas the locations of non-target patterns need not be specified, but are given
implicitly: Any pattern found by the detector that does not correspond to a ground truth
target pattern must be a non-target pattern, i.e. a spurious detector response. Therefore, all
patterns in the ground truth are target patterns. How the ground truth pattern locations are
represented'® and how detector results are matched' for determining correspondences to the
ground truth is application-specific, cf. Section 5.8 for a concrete example.

For the classifier, ground truth class labels of the detected patterns are required for
assessing the quality of classification results. The class labels can be transferred from the
ground truth patterns to the detected patterns via correspondence: Any pattern in the ground
truth is a target pattern, and any detected pattern that matches a ground truth pattern is
hence labeled a target pattern'®. Any detected pattern not corresponding to a ground truth
pattern is labeled a non-target pattern. Besides being used in measuring classification quality,
the ground truth-labeled detected patterns are furthermore employed in supervised learning
of a predictive model for classifying detected patterns, as discussed abstractly in Section 3.6
and concretely in Chapter 6.

3.5 Pattern Detector

A further essential component in the SynOpSis approach is the pattern detector. The
patterns to be detected in the input images are regions that are candidates for containing
objects of interest. The pattern detector appears twice in Figure 3.2: Firstly, it is used in
the Optimization stage, during the process of finding optimized parameters with respect to
synthetic ground truth-annotated data. Secondly, it is used with the optimized parameters in
the Application stage. Here it produces pattern detection results for the real sensor images
that are input to SynOpSis.

13Possible representations encompass points, points with radii, a segmentation mask, or polygons. Further
representations are conceivable, particularly in application scenarios beyond PAMONO.

HGeveral definitions of a ‘match’ between a ground truth pattern and a detected pattern are conceivable,
depending on the representation of both and on application requirements. Possible definitions may e.g. measure
point distance, point-to-polygon-incidence, polygon-centroid-to-polygon distance or polygon overlap area. A
concrete example is given in Section 5.8.

151f multiple classes of target patterns have to be distinguished from the non-target patterns and from each
other, the ground truth target patterns need to be labeled accordingly. The application-specific matching
procedure can be used to transfer class labels from the ground truth patterns to the detected patterns to
provide a comparison between ground truth labels and the labels predicted by the classifier. All classes of
target patterns to be distinguished must be represented in the synthetic images.
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Parameters

A\ 4
Real/Synthetic Pattern Patterns
Images Detector

Figure 3.3: Pattern Detector Input and Output. The pattern detector module of SynOpSis receives
as input data either real images recorded by the sensor or synthetic images generated by a
signal model mimicking the sensor. In addition to the data, its second input is a parameter
set configuring the algorithms constituting the detection process. The output consists of the
patterns that were detected in the input data, using the input parameters.

Depending on the type of images supplied, and the objects of interest to be found, the
concrete implementation of the pattern detector may vary considerably. In the abstract
depiction of SynOpSis, given in this chapter, the pattern detector is hence regarded as
an abstract module that needs to be implemented in a detection-task-specific way, as e.g.
presented in Chapter 5. Only its input and output interface is specified here (Section 3.5.1),
and a choice of possible objectives that can be used in optimizing its application-specific
parameters is presented (Section 3.5.2).

3.5.1 Input and Output

Figure 3.3 repeats the pattern detector from Figure 3.2 and its in- and outputs for convenience.
As can be seen from here, as well as from both instances of the pattern detector in Figure 3.2,
its input consists of the images to be analyzed and the algorithmic parameters configuring it.
Consequently, the pattern detector is assumed to contain at least one parametric algorithm,
otherwise the Optimization stage would be trivial. The number and types of algorithmic
parameters of the pattern detector are very application-specific. Since in SynOpSis the task is
finding target patterns in images, examples of possible parameters are those arising in image
processing, like kernel sizes/shapes for filtering and searching, the choice and parameterization
of denoising methods, or detection thresholds. A set of parameters encompassing values for
all free parameters of the pattern detector is denoted a detector parameter set. Such a
parameter set yields one certain instance/configuration of the pattern detector.

Parameter sets must be clearly distinguished from the data that is input to the pattern
detector. This data consists of the images in which the patterns are to be detected. The
domain of the input images must match that handled by the pattern detector. For example
in PAMONO, the images are from the spatiotemporal domain, i.e. time series of consecutive
images are analyzed.

The output of the pattern detector consists of a set of patterns localizing candidate
regions for objects of interest in the images. These regions can be represented in a multitude
of ways, e.g. points with radii, a segmentation mask, or polygons. The concrete choice of
representation depends on application requirements.

3.5.2 Objectives

Suitable and automatically evaluable objective functions are the key component in using
optimization to automatically configure the parameters of the pattern detector. Such objective
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Figure 3.4: Confusion Matrix of a Detection Task — Illustration. An exemplary PAMONO image
is shown. Patterns found by the detector are indicated by green ellipses. In the top right
corner, three non-target pattern detections can be seen, counting as False Positive (FP) detector
responses in the confusion matrix, cf. Table 3.1. Below that, two target patterns were missed
(no detector responses), resulting in False Negative (FN) entries in the confusion matrix. All
other patterns are target patterns that were correctly detected and hence count as True Positives
(TPs). The case of a True Negative (TN) does not arise in detection because a detector only
yields positive responses.

functions will be presented here. They are used in the Optimization stage in Figure 3.2.
Before these objectives can be defined, the adopted conception of the detection task must be
stated. In the following, the task of detecting patterns in input images is regarded as the
task of identifying salient image regions that are candidates for containing objects of interest.
The detector can only yield positive responses, i.e. detections, cf. green ellipses in Figure 3.4.
Anything not causing a detector response is not represented in the output of the detector. To
determine whether these responses are related to target patterns and hence correct, they have
to be matched to the ground truth, which by Section 3.4.2, contains solely target patterns.
If a ground truth match can be found for a detected pattern, this is a True Positive (TP)
detector response cf. the exemplary PAMONO image in Figure 3.4 (all ellipses marked as
TPs contain a faint blob which is the target in this case because these blobs are indicative of
nano-objects attaching to the surface of the PAMONO sensor). For the current discussion, it
is assumed that the case of multiple detected patterns matching a single ground truth pattern
does not occur. This case is treated extensively later in this section. If no ground truth
match can found for a detected pattern, this is a False Positive (FP) detector response (three
ellipses in the top right of the figure are marked as FPs because they do not contain a blob).
Furthermore, there can be ground truth patterns for which no corresponding detected pattern
exists. Such a situation arises if a ground truth target pattern is missed by the detector and
is thus denoted as a False Negative (FN) (on the right side of the figure there are two blobs
without an ellipse, hence marked as FNs). Note that this negative case does not conflict with
the statement that the detector can only yield positive responses because an FN is not a
detector response and can thus only be determined owing to the ground truth. The case of
True Negatives (TNs) does not exist in detection tasks [WHS+12; SLN+-09] because such
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Table 3.1: Confusion Matrix of a Detection Task. The confusion matrix of a detection task tabulates
the total numbers of TP, FP, FN and TN detection outcomes. A True Positive (TP) is a detector
response that matches with a ground truth pattern, while a False Positive (FP) is a response for
which no matching ground truth pattern exists. A False Negative (FN) is a pattern in the ground
truth for which no detector response exists, and hence an object of interest that has been missed
by the detector. A True Negative (TN) is not defined in this context because it corresponds to
something that has neither been detected, nor marked in the ground truth, and hence can not be
counted, thus TN =0 [WHS+12; SLN+09]. TPs are the desired responses, while FPs and FNs
are undesired. FPs can be remedied by subsequent classification, while FNs (misses) can not be
recovered.

Ground Truth
Target | Non-Target
Response TP FP
No Response FN TN =0

Detector

an event would neither cause a detector response, nor is it represented in the ground truth,
which by definition consists solely of target pattern locations. TNs do not relate to discrete
events in the analyzed data, so the number of TNs is defined to be zero.

Basics: Confusion Matrix

In order to state these presented cases more formally, and as the basis for defining objective
functions, the concept of a confusion matrix is employed, which is a popular tool in
assessing the quality of machine learning algorithms for classification [Pow11]. Generally,
a confusion matrix tabulates outcomes of classification algorithms, which are often called
predictions and which assign predicted class labels to the examples to be classified. In the
confusion matrix these predictions are contrasted with the actual ground truth class labels
that a perfect classifier would have predicted. The confusion matrix E is a C' x C' matrix,
where C' € N5y is the total number of classes to which the examples to be classified can
belong. Each matrix entry e;; € Nxo,4,7 € {1,...,C}, equals the number of examples that
were predicted to belong to the class named ¢;, while the ground truth assigns them to the
class named c;. Entries e; ; with 7 = j count correct predictions, while all other entries count
erroneous predictions. Hence, the confusion matrix can be used to asses classifier quality.

Table 3.1 shows the peculiar confusion matrix of the detection task discussed here. It is a
2 x 2 matrix, due to C' = 2 classes: target and non-target. The peculiarity of the confusion
matrix arising in detection is that the entry for TNs is always zero; otherwise it has the
same properties as a confusion matrix from two-class, i.e. binary, classification. Therefore
any measure of binary classification quality that does not divide by TN can be computed to
measure detection quality, cf. Appendix A for examples of such measures.

Automatic optimization of detector parameters in SynOpSis employs such measures as
objectives and hence requires automatic computation of the confusion matrix. As pointed
out, this can be achieved by implementing a matching procedure between detected and
ground truth patterns that suits the application task at hand, cf. Section 5.8 for an example.
Given such a matching procedure, the TPs, FPs and FNs can simply be counted, setting
up the confusion matrix. Therefore, the components required for automatically evaluating
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the quality of detector parameter sets are present, enabling utilization of these measures as
objective functions during parameter optimization.

Objective 1: Recall

For the sake of brevity, this section lists only the objective functions that were finally applied
in optimizing PAMONO pattern detection. Depending on the application and its requirements,
other objective functions may be advisable, hence Appendix A provides a wider selection of
possible objectives, along with references for further reading. As stated in Section 3.1, the
analysis task is divided into a detection and a classification part. The pattern detector follows
the goal of not missing any target patterns, i.e. it strives to keep the FN entry in the confusion
matrix as small as possible. The reason is that FNs do not result in detector responses and
can thus not be remedied during the subsequent classification process. This goal of high
sensitivity may be pursued at the possible cost of many spurious, i.e. non-target, detector
responses: The FP entry may be large, because FPs can be eliminated by the subsequent
pattern classifier.
As a consequence, choosing Recall as an objective function for parameter optimization is
a natural choice [PKC09]. Recall [HG09] is defined as
TP
Recall = TP+ FN (3.1)
and yields the ratio of target patterns in the ground truth (denominator) that was found by
the detector (numerator). Optimizing for maximized Recall keeps the number of uncorrectable
misses small by penalizing FNs in the denominator. It may result in a large number of FPs
because they are not penalized, thus only high Sensitivity'® is rewarded. In order to avoid
overly sensitive parameters that simply cover the entire image domain with rather random
detector responses, the number of detector responses is allowed to be at most a times the
number of ground truth target patterns. Any parameter set attaining more responses is
discarded. For example in PAMONO a = 5 was chosen, cf. Section 5.8 and Section 7.3.1.
Imposing a threshold on the maximum number of admissible detected patterns can be regarded

as introducing a hard constraint on the minimum required value of Precision = T}3T+PFP. Besides
avoiding overly sensitive parameters, this heuristic can save computational resources because
the number of detected patterns can be determined at low computational cost, whereas
actually computing Recall and Precision involves matching detection results to the ground
truth. As the number of ground truth patterns is constant, matching cost increases linearly
with the number of detections. Thus, the heuristic particularly avoids the more expensive
matching computations involving many detected patterns. Doing so is particularly beneficial
in the Optimization stage because objectives have to be evaluated many times, and parameter
sets may be examined that generate large numbers of detected patterns.

Note that the account of Recall given here does not consider the case where the detector
yields multiple responses to a single target pattern, which is a case that is not reflected in
confusion matrices arising in classification, but that can occur in detection. This case is
treated further below, where Recall is revisited. Before that, the second objective function is
presented because revisiting Recall requires arguments and a definition given in the context
of the second objective.

Y6Recall is synonymously denoted as Sensitivity.
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Objective 2: M-Rate

Besides FPs, repeated detections of the same object of interest may pose an issue, as
encountered e.g. by Han et al. [HBR+12] in the application case of detecting cell nuclei
in 2-D images. In PAMONO data analysis, this issue is aggravated by the additional
temporal dimension and the resulting fact that the same target patterns are visible in
multiple subsequent images. Hence avoidance of repeated detections is used as an objective
in PAMONO.

Stated in the terminology employed in this thesis, the case of a repeated detection is
constituted by multiple detector responses matching a single ground truth pattern. This
additional type of spurious detector response is particularly undesirable because it is the
detection of an actual target pattern and hence a TP, adding to the TP entry in the confusion
matrix. Whether a detector response is a repeated or a first detection can only be determined
by matching it to the ground truth, followed by testing whether it matches to a ground truth
pattern that already has a matching partner. The problem is that this information is not
available in the absence of ground truth and hence in analyzing real data. A parameter set
yielding many repeated detections is prone to overestimating the number of target patterns
present in a dataset because each repeated detection is likely to be assigned to the target
pattern class during classification. The reason for this is that a repeated detection is caused
by an actual target pattern, and thus exhibits signal features like a desired first-time detection.
So the classifier can not be expected to sort out repeated detections, but will rather classify
them as target patterns. These are excess patterns which result in an overestimation of the
number of target patterns in the images.

As a conclusion, this issue must be dealt with during optimization. One option to do
so is by rewarding parameter sets that minimize the number of repeated detections. Multi-
Detection-Rate (M-Rate) is proposed as a measure to quantify the ratio of repeated detections
incurred by a parameter set. In PAMONO data analysis it is employed as a second objective
function in optimizing the pattern detector. It is defined as

TP
M-Rate = -1 + i (32)
TP

where TP is the number TP detector responses, excluding secondary and all further repeated
detections. If there are no repeated detections TP = TP and thus M-Rate = 0. Note that
because TP < TP it holds that M-Rate € Rsg. Besides penalizing repeated detections in
the optimization of the pattern detector, further heuristics can be applied to prevent them.
Such heuristics can e.g. exploit proximity between first-time and repeated detections (cf.
Section 5.6.3 for an example), at the cost of incurring a possible decrease in the capability
to resolve closely neighboring target patterns. Another possible heuristic for this issue was
proposed by Arteta et al. [ALN+12], where a structured Support Vector Machine (SVM)
[THJ+04] is used to classify detected regions, and one-to-one correspondence of these regions
to a ground truth dot annotation is rewarded by an additional term in the loss function of
the structured SVM.

Objective 1 Revisited: Recall

With the issue of repeated detections discussed, and the number TP of TPs cleansed from
repeated detections defined, the first objective in optimizing the pattern detector is now
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revisited. The reason is that defining Recall with respect to the number of TPs has its roots
in the context of classification, where it is the accepted textbook definition. In the context
of detection however, this definition has an adverse effect concerning repeated detections
of the same target pattern: Consider two sets of detector parameters that differ only in
the number of repeated detections they incur. Let TPy be the number of TPs found by
the first parameter set and TP, = TP + D, D > 0 the analogous number for the second set,
incurring D more repeated detections than the first one. Recall; and Recally as attained by
the two parameter sets are calculated by substituting TPq, respectively TP; + D for TP in
Equation (3.1). Comparing the results yields that

TP, TP+ D

Recall; = <
TPy +FN TPy +D+FN

= Recally

for D >0AFN>0. It can be seen that this definition of Recall prefers parameter sets with
more repeated detections over those with fewer. For increasing D and constant FN > 0, Recall
approaches its maximum of 1.

However, it is desirable that Recall in a detection task depends only on the number of
ground truth target patterns that were detected and does not reward repeated detections.
Therefore it is more appropriate to define Recall with respect to the number TP of TPs
cleansed from repeated detections. Doing so makes the thus defined version of Recall invariant
to the number of repeated detections, giving the final definition of detector Recall:

Recall = —1 (3.3)
TP + FN
Note that by this definition, a parameter set that incurs more repeated detections than
another, while everything else is unchanged, attains the same value for Recall and a higher
value for M-Rate and is thus Pareto-dominated!” by the other parameter set, i.e. it performs
worse in at least one objective while not performing better in any other.

Any value of Recall that is computed with respect to the detector in the
course of this thesis uses the definition in Equation (3.3). This includes the
Recall values employed in detector optimization as well as in reporting results.

Note that letting measures of detection quality drive the search for algorithmic parameters
means that the image processing algorithms within the detector adapt to the data in terms
of the best detection-specific image enhancement, not in terms of image restoration.

3.6 Pattern Classifier

In the previous section, a pattern detector was presented along with reasons for using Recall
as one objective function in optimizing that detector: A highly sensitive detection is required
in order to prevent missing any target patterns in the data. This increases the risk of detecting
many non-target patterns, e.g. due to noise or other unwanted artifacts in the input images.
Stated as entries in the confusion matrix of detection from Table 3.1, a high number of FP
detector responses is accepted for the sake of decreasing the number of FNs.

Now the pattern classifier serves to separate the detector responses into target and non-
target patterns, making up for the adverse consequences of highly sensitive detection. For

"The notion of Pareto-dominance is discussed in more detail in Section 3.7.4.
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Figure 3.5: Pattern Classifier Input and Output. The pattern classifier module of SynOpSis receives
detected patterns annotated with feature vectors as input data. In addition to the data, its

second input is a parameter set configuring the employed learning algorithm. This learning
algorithm computes a classifying model from training data with known ground truth class labels
which are available e.g. via synthesis. The classifying model can be regarded as a mapping from
feature space to class label space and is used to assign predicted class labels to the input patterns.
Thus the output of the pattern classifier consists of the input patterns, annotated with predicted
class labels.

this purpose it uses patterns detected in synthetic data with known ground truth labels, to
train a classifying model that predicts whether an input pattern belongs to the target or to
the non-target class. After training, this model can be used to classify the real input data.

As to be described in Section 3.6.1, besides training data, many learning algorithms
require configuration in terms of parameter sets. Careful tuning of these parameter sets can
considerably increase results quality. Like with the detector, parameter tuning is automated
by optimizing suitable objective functions which are presented in Section 3.6.2.

3.6.1 Input and Output

Figure 3.5 shows a detail view of the pattern classifiers appearing in Figure 3.2. Furthermore,
it illustrates the process of machine learning-based classification. The first input of the
pattern classifier is a parameter set configuring the employed learning algorithm. The choice
of learning algorithm determines the number and kinds of these parameters. In SynOpSis,
supervised classification is used. Examples of applicable supervised learning algorithms and
some of their parameters are the number of regarded neighbors in k-Nearest Neighbors (k-NN)
[HTF09], the number of features available for splitting at each node in a Random Forest
[Bre01] or the regularization parameter and choice of kernel function in an SVM [MMR+-01].
These algorithms can all be filled in as the learning algorithm in Figure 3.5.

Independent of the concrete learning algorithm chosen for classification, its task is to
compute a classifying model that predicts class labels for observed data examples. A data
example is represented as a feature vector f from a certain feature space. This space can be
mixed, containing continuous and discrete variables. Discrete variables may be from finite
or infinite sets and may be ordered or unordered. Not every classifier supports all types of
variables, thus type conversions like discretization may be necessary. The classifying model
output by the learning algorithm can be represented as a mapping £(f) = p from feature
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space to label space, i.e. p is the label predicted by the classifying model, and p originates
from the set {c1,...,cc} of C possible class labels.

In order to compute this classifying model, the learning algorithm needs, besides its
parameters, training data: In supervised learning the training data consists of a set of pairs
(f,t), each containing a feature vector f and its associated ground truth label t € {c1,...,cc}.
The number of such pairs is the size of the training dataset. Computing the classifying model
&(f) is typically conducted by minimizing a loss function between the predicted labels £(f) = p
and the corresponding ground truth labels ¢ over all ground truth-labeled examples (f,t)
used as training data. The classifying model £ is an abstraction of the training data and a
representation of the information learned from executing the learning algorithm on it. Since
£ is defined on the entire feature space, it can not only be evaluated for the training example
points but also for any other points in the feature space. Therefore, £ can be used to compute
predicted class labels p for unseen examples from the same feature space. In Figure 3.5, the
classifying model £ is applied to the second input of the classifier, consisting of the observed
examples to be classified, which are represented by their feature vectors f. The output of the
classifier is a predicted class label p = £(f) for each input example to be classified.

Most learning algorithms are rather generic. Application specifics are located primarily in
feature extraction: The features are designed, aiming at the best possible separation of classes
in feature space; how this goal can be achieved, heavily depends on application context, cf.
Section 6.2.

In SynOpSis, the data examples are feature vectors computed for the responses of the
pattern detector. Such responses can be from one of two classes: The target class'® is for TP
detector responses, whereas the non-target class is for FP detector responses. Training data
with known ground truth class labels for supervised learning is available via synthesis: The
training examples are obtained by running the pattern detector on synthetic images, followed
by matching its responses to the ground truth patterns. Labeling detector results is necessary
because the classifying model must learn to classify the patterns as they are provided by
the detector, as opposed to classifying the patterns as they are represented in the ground
truth, since these representations and appearances might differ considerably. Using training
data gathered from synthetic images renders manual ground truth labeling unnecessary. It is
assumed that the signal model is accurate enough such that a classifying model learned from
the synthetic training data yields a good generalization performance towards real data.

In summary, SynOpSis uses the Synthesis stage to provide the training data for the
pattern classifier in Figure 3.5. The parameters of the employed learning algorithm are
found by the Optimization stage, using the objectives described in the subsequent section.
During this optimization, the input patterns originate from synthetic data as well, to enable
automatic evaluation of the objectives assessing classification quality. In contrast to that, in
the Application stage, the input patterns for the classifier are computed from the real data
to be analyzed. In both cases the output of the classifier consists in annotating the input
patterns with predicted class labels, aimed at separating target from non-target patterns.

Chapter 6 provides details on how the pattern classifier and further associated data
processing are realized for PAMONO data analysis, including the employed application-
specific features in Section 6.2.

1811 case multiple types of objects of interest are to be distinguished, there can be more than one target
class label. Not all learning algorithms and performance measures support the multi-class case.
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Figure 3.6: Confusion Matrix of a Two-Class Classification Task — Illustration. Exemplary PA-
MONO data is shown to illustrate classification successes and errors. Detector outputs are
indicated by green color (ellipses), while classifier outputs are indicated by red color (checkmarks
and crosses). The classifier receives patterns found by the detector as inputs (ellipses). As
output, the classifier predicts, whether they belong to the target class (checkmark) or to the
non-target class (cross). True Positive (TP) detector responses relate to target patterns (a)—(b).
Their classification can either be correct, constituting a TP of classification (a) or incorrect,
constituting a False Negative (FN) (b). Analogously, False Positive (FP) detector responses relate
to non-target patterns (c)—(d). Their correct classification constitutes a TN of classification (c),
whereas their incorrect classification constitutes a False Positive (FP) (d).

3.6.2 Objectives

Besides being used in the production of ground truth-annotated training data, synthesis is
also used in optimizing the parameter set of the learning algorithm in the pattern classifier:
Like with the pattern detector, the Optimization stage in Figure 3.2 finds suitable values for
the parameter set of the learning algorithm by optimizing automatically evaluable measures
of classification quality. These measures are used as objective functions with respect to which
the parameters are optimized. Therefore, the parameters of the learning algorithm can be
tuned automatically.

Confusion Matrix of a Two-Class Classification Task

As with the detector in Section 3.5.2, the objective functions are defined using the entries of
a 2 x 2 confusion matrix. These entries are visualized in Figure 3.6, illustrating classification
successes and errors with respect to exemplary PAMONO data: The patterns provided by the
detector are marked as green ellipses. Based on the features of each pattern, the classifying
model makes predictions of class labels, indicated as red checkmarks and crosses, respectively.
Patterns predicted to belong to the target class are indicated by a red checkmark; those
predicted to belong to the non-target class are indicated by a red cross. Ground truth class
labels are provided as text. There are four cases: Target patterns, shown in (a)-(b), can either
be predicted correctly, constituting a TP of classification (a), or incorrectly, constituting an
FN (b). These are the two cases relating to TP detector responses. Analogously, non-target
patterns, shown in (¢)—(d), can either be predicted correctly, constituting a TN of classification
(c), or incorrectly, constituting an FP (d). These are the two cases relating to FP detector
responses.

Table 3.2 shows the corresponding confusion matrix of the pattern classifier. The classifier
receives all detector responses as inputs, i.e. its TPs and FPs because detection knows only
positive responses. Classification means separating these two classes, hence they become
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Table 3.2: Confusion Matrix of a Two-Class Classification Task. The input of the classifier are all
detector responses, i.e. its True Positives (TPs) and False Positives (FPs) because detection knows
only positive responses. Classification means separating these two classes: The detector’s TPs
correspond to target patterns and its FPs to non-target patterns. The detector’s TPs become the
positive ground truth class of classification (left column). They can either be classified correctly
(TP classifier prediction) or incorrectly (False Negative (FN) classifier prediction). The detector’s
FPs become the negative ground truth class of classification (right column). They can either
be classified correctly (True Negative (TN) classifier prediction) or incorrectly (FP classifier

prediction).
Ground Truth
Positive (TPs of detector) | Negative (FPs of detector)
. Positive TP FP
Classifier
Negative FN TN

the ground truth labels, listed as column headings in the matrix. The TPs of the detector
become the ground truth positive class of classification (left column). If the classifier predicts
such an example positively, it counts in the TP entry, otherwise it counts as FN because a
target pattern was predicted as non-target by the classifier. The FPs of the detector become
the ground truth negative class of classification (right column). If the classifier predicts such
an example positively, it counts in the FP entry because a non-target pattern was predicted
as target, otherwise it counts as a TN.

Note that it is vital to strictly distinguish between the confusion matrix of the detector
and that of the classifier: Even though the entries have the same names, they characterize
results from very different processing stages. Defining the objective functions for classification,
which is done now, always refers to the quantities in the confusion matrix of classification.

For brevity, the following paragraphs discuss only the measures used as objectives in
optimizing PAMONQO pattern classification. Appendix A gives a selection of further objectives,
suitable for other applications. In addition to that, Sokolova and Lapalme [SL09] provide an
overview of performance measures for binary and multi-class classification tasks.

Objective 1: Classifier Recall

The first objective with respect to which classifier parameters are optimized was also used in
optimizing the detector: Recall [HG09], which is defined as

TP
= —. A4
Reca TP 1 FN (3.4)

The difference between this definition and detector Recall is that classifier Recall refers
to the entries of the classifier confusion matrix in Table 3.2. Optimizing the classifier for
Recall is beneficial because the goal of not missing any target patterns in the data also
exists in classification. However, the reason for having a classifier in SynOpSis was to use
it for separating target from non-target patterns, and optimizing it solely for Recall does
not promote classifier parameters that are good at achieving this goal. Therefore, Recall is
complemented with another objective doing exactly that.
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Objective 2: Classifier Precision

Precision [Pow11] measures the ratio of patterns correctly predicted to be target patterns
among all patterns predicted to be target patterns:
TP

Precision = TP TP (3.5)
Hence optimizing Precision rewards decreasing the number of FPs and serves as a comple-
mentary “force” to detector and classifier Recall: Classifiers with high values for Precision
are more likely to label non-target patterns as negatives because this ability is measured by
Precision.

Note that in the given scenario of post-detection classification, penalizing a high number of
FPs is to be preferred over rewarding a high number of TNs. The reason is that if classification
serves to sort out the FPs of detection, TNs are not relevant: The goal is to attain as many
TPs as possible, while avoiding errors, i.e. FPs and FNs. TNs in classification are errors
in detection and as such they should not be rewarded by the objectives to be optimized:
Parameter sets that produce more TNs, while all other entries of the confusion matrix remain
unchanged are not better than parameter sets producing fewer TNs. Parameter set quality is
invariant to the number of attained TNs.

Precision and Recall in Conjunction

Optimizing the classifier simultaneously for Precision and Recall captures exactly the three
relevant entries from the confusion matrix in Table 3.2. TPs are rewarded, while FPs (type I
errors) and FNs (type II errors) are penalized with equal weight. Optimizing both objectives
stmultaneously seeks to attain high values in both, hence avoiding the trivial extremes:
Recall = 1 can trivially be achieved by a classifier always predicting the positive class, but
results in poor Precision if there are many examples in the negative class. Conversely, a
classifier that finds at least one TP and predicts all other examples to belong to the negative
class achieves Precision = 1 but incurs poor values for Recall if there are many examples in
the positive class. An advantage of simultaneously optimizing multiple objectives is that
good values in one objective can not “remedy” bad values in other objectives. The latter is
typically a problem when only a single composite objective is optimized, that is computed as
a weighted sum of several original objectives.

A possible alternative if single-objective optimization is demanded is Area under the
ROC Curve (AUC) [Faw06]. AUC is defined as the integral of the Receiver Operating
Characteristic (ROC) curve, the computation of which requires a classifier that yields not only
a binary classification, but also a measure of confidence in that classification. Details on the
computation of ROC/AUC and further possible objective functions for classifier optimization
are given in Appendix A. If single-objective optimization is desired but the classifier does
not provide confidence values, another possible alternative is using Fj score [Chi92] as the
objective, which is also defined in Appendix A. Fjp score is the weighted harmonic mean
of Precision and Recall and allows to control the relative importance of both via the free
parameter 3. By being derived from Precision and Recall, Fg score is invariant to the number
of TNs. In SynOpSis, aggregate objectives like AUC and Fj score enabling single-objective
classifier optimization are not considered because the necessity of also optimizing the detector
makes the task an inherently multi-objective one. However, a different approach, using
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desirability functions to enable single-objective optimization in SynOpSis, is described in
Section 3.8. The advantages of this approach are that it can aggregate over detector and
classifier objectives, while integrating expert preferences and demanding for good values in
every constituent objective.

Reducing Undue Optimism in Objective Values

In the Optimization stage in Figure 3.2, the pattern classifier and the evaluation of its
objectives are run in a K-fold cross-validation [Koh95] on the synthetic input (cross-validation
is neither shown in Figure 3.2 nor 3.5 to avoid cluttering). This means that the synthetic input
is divided into K disjoint subsets of approximately equal size. A classifying model is trained
using the union of K —1 such subsets of detected patterns as training data. This model is used
to classify the patterns in the remaining subset, and objectives are evaluated on the obtained
classification. This is repeated K times, until every subset has been classified once, and
objectives are averaged over these K folds. Consequently, the scheme in Figure 3.5 and the
evaluation of objectives are run K times. Computing objectives in a cross-validation avoids
optimism in the reported objective values, which would otherwise be caused by overfitting, if
objectives were evaluated on the same data that was used for training. Cross-validation and
its merit in parameter tuning is explained in more detail in the context of model selection
and performance estimation. Theory behind both topics is provided in Section 3.9, while
the concrete setting used in PAMONQO data analysis is part of the experimental setup, and
thus given in Section 7.3.4. Computation of the final model used in the Application stage
of Figure 3.2 depends on the setting described in that latter section and is thus detailed in
Section 7.3.5.

3.7 Optimization Stage

Manual tuning of algorithmic parameters to make them suit a given problem instance has
been called “more of an art than a science” by Bergstra et al. [BBB+11]. They furthermore
state that recent improvements of results for image classification benchmarks are often due
to finding better parameters for existing approaches, rather than being due to better new
approaches. These reasons make automatic tuning of algorithmic parameters a desirable
goal. Furthermore, in the context of PAMONO data analysis, having an automatic procedure
for determining algorithmic parameters bears huge practical benefits because lab workers
using the PAMONO sensor are no longer required to possess extensive knowledge of how to
configure the algorithms involved in data analysis. Instead of conducting tedious manual
search in a high dimensional parameter space, they can focus on their actual tasks.

In the SynOpSis approach, automatic parameter tuning is realized in the Optimization
stage, cf. top right part of Figure 3.2. The parameter space of the optimization problem is
spanned by the computational parameters of the algorithms constituting the detector and
classifier (the parameters for PAMONO are listed in Sections 5.7 and 6.8). Suitable parameters
for both these modules are found by optimizing a number of objective functions with respect to
those parameters (the objectives for PAMONO are listed, and their computation is explained
in Sections 3.5.2 and 3.6.2). This process automatically adapts them to changing physical
parameters in a sensor setup.
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The remainder of this section is organized as follows: Section 3.7.1 presents related work on
optimization which can be used in implementing the Optimization stage in SynOpSis. Among
the algorithms sketched here, Section 3.7.2 identifies Multi-Objective Genetic Algorithms
(MOGAS) as a suitable choice for optimizing PAMONO data analysis. Subsequently, this class
of algorithms is briefly sketched, while introducing the necessary terminology: Section 3.7.3
gives a short introduction to genetic algorithms in general, while Section 3.7.4 covers the
multi-objective case. Section 3.7.5 concludes the general part by summarizing Non-Dominated
Sorting Genetic Algorithm IT (NSGA-II) as a successful representative of the class of MOGAs
and giving the rationale why it was chosen in implementing the Optimization stage. Finally,
Section 3.7.6 describes two different fashions in which SynOpSis can be optimized: a sequential
and a global fashion. Note that Sections 3.7.3 to 3.7.6 are prerequisites for the depiction of
the overall genetic algorithm setup used for PAMONO data analysis, which is given as part
of the experiment description in Section 7.3.2.

3.7.1 Related Work

Numerous techniques for the optimization of objective functions have been proposed over
the last decades. Some of these techniques date back to the 1960s and earlier and are still
successfully applied today. A small selection of these techniques, providing an overview, is
listed here.

e Brute force approaches can be applied if the parameter space is very small or objective
function evaluations are very fast/cheap. They work by simply enumerating a large
number of parameter sets and evaluating the objectives. Two popular brute force
approaches are grid search [BB12] and Latin Hypercube Design (LHD) [MBC79].

o The method of steepest descent [Kel99] requires (an approximation of) the gradient
of the objective function to be optimized. It iteratively determines new parameter sets
by stepping through parameter space in the direction of the negative gradient, i.e. the
direction of steepest descent (in case of minimization). Step lengths must be chosen
carefully in each iteration.

e Newton’s method and its offspring like the Gau3-Newton method or quasi-
Newton methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS) (all of these
methods are described in [NW06]) analytically optimize local quadratic model functions
obtained by second-order Taylor expansion around iterated expansion points. The
minimizer determines the Gaul-Newton step through parameter space, and after taking
that step, the method is iterated. The listed methods differ mainly in whether and how
they approximate the Hessian matrix in the local quadratic model. Again, step lengths
must be chosen carefully in each iteration. Another hazard arises by the fact that in
regions that are far from local minimizers, the Newton-steps can not be guaranteed to
improve the objective.

o The Levenberg-Marquardt algorithm [Mar63] addresses this issue by continuously
blending between Gaufi-Newton and steepest descent steps, depending on estimated
proximity to a local minimizer: When closer to a minimizer, the Levenberg-Marquardt
step becomes more similar to the Gauf-Newton step because here Gauf3-Newton con-
verges faster than steepest descent. When further away, the Levenberg-Marquardt step
becomes more similar to the steepest descent step because unlike the Gauf3-Newton
step, it is guaranteed to improve the objective.
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o In contrast to the previous three methods, the Nelder-Mead algorithm [NMG65]
requires no derivatives of the objective function. It is the nonlinear generalization of
the linear simplex algorithm [Dan98]. For initialization in a d-dimensional parameter
space, it firstly computes objective values for d + 1 points, that are affinely independent.
These points thus span a simplex in parameter space. Traversal of parameter space
is conducted by iterated replacement of the worst-performing point with a new point
that is computed on the basis of the other simplex points and that aims to improve the
objective.

Note that all these algorithms, except for the brute force ones and Nelder-Mead, require
availability of (partial) derivatives of the objectives to be optimized.

More recent approaches that are more specific to optimizing parameter sets of algorithms
were already discussed as related work in Section 3.3. None of those methods require
derivatives since in that scenario derivatives are rarely available. The discussed methods
traverse parameter space solely by function evaluations like the model-free methods in
[HHL+09; BSP+02; BYB+10], or by meta-models that are created solely from function
evaluations, like in [BLP10; KKF+11; HHL11; BBB+11; BMT+12]. The third discussed
class of derivative-free methods are Evolutionary Algorithms (EAs) [AST09; MMB+14a;
MMB+14b; Luk13; Deb01] which simulate biological evolution among a population of
candidate parameter sets to create better candidates by mutating and crossing them over.
Genetic Algorithms (GAs) [SP94] are a widely used class of EAs, but further classes, like
evolution strategies and genetic programming exist [Luk13; Deb01]. Hybrid or (synonymously)
Memetic Algorithms (MAs) [Mos89] are EAs that combine evolutionary methods with local
search. In a wider scope, the more general term of evolutionary computation includes
additional biology-inspired optimization techniques, e.g. Ant Colony Optimization (ACO)
[DB05] and Particle Swarm Optimization (PSO) [Kenl10; RC06]. EAs readily extend to
multi-objective optimization.

As a summary, the preceding paragraphs listed derivative-based and derivative-free
algorithms for optimization, some of which can handle the multi-objective case. Provided
that the examined optimization problem fulfills the assumptions of the respective algorithm,
any of the presented algorithms can potentially serve to implement the Optimization stage in
Figure 3.2. This is enabled by the modular architecture of SynOpSis.

3.7.2 Algorithm Choice for Optimizing PAMONO Data Analysis

Concretely choosing the algorithm for realizing the Optimization stage in Figure 3.2 is
equivalent to selecting how to implement the “Update Parameters” box in the figure. In
order to choose a certain optimization algorithm, the particular problem to be solved must
be considered. As this thesis focuses on PAMONO data analysis, an optimization algorithm
suiting this application case is identified in the remainder of this section. From the optimization
point-of-view, the PAMONO data analysis task has the following properties:

e It has a large parameter space: The pattern detector for PAMONO has 28 free
parameters, cf. Section 5.7. In addition, there are between zero and three parameters for
the pattern classifier, cf. Sections 6.6 and 6.8. This large number of parameters leads to
combinatorial explosion, rendering exhaustive approaches like grid-based optimization
infeasible.
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The parameter space is a mixture of continuous and discrete variables (mixed-
integer [BKL+13]), with approximately equal numbers of boolean, integer and floating
point parameters.

Approximating derivatives is impeded by the large number and mixed-type nature
of the parameters.

PAMONO data analysis involves multiple objectives, cf. statements of objectives in
Sections 3.5.2 and 3.6.2.

The objectives are non-linear and non-convex, as can be seen by empirically evalu-
ating a number of sample points.

Given these properties of PAMONO data analysis, the decision was made in favor of

using a Multi-Objective Genetic Algorithm (MOGA) due to the following advantages of this
technique:

e Evolutionary approaches to optimization are general and easy to use, while at the

same time very successful in practice as reported in, amongst many others, [AST09;
MMB+14a; MMB+14b; ARR+07; BN07; DK07; DPM00; GBGO05; HBK10; KBM+09;
MKBO09]. Evolutionary approaches are a quick way of exploring and quantifying the
potential for optimization in a given problem. They can serve as an initial step for
developing a more in-depth understanding/model of the underlying problem and for
identifying the components of a solution that contain the largest potential gain.
Genetic Algorithms (GAs) can cope with the large parameter space in PAMONQO and
are flexible enough to handle the mix of boolean, integer and floating point variables
arising in this application.

No derivatives are required for running a GA. The only requirement is that the fitness,
i.e. the objective function(s), must be evaluable in some way. Hence, e.g. even energy
measurements can be optimized, cf. [Tim12; LSW13; LMS+14; NLE+15; LKD+14].
GAs do not make any assumptions about the underlying objective landscapes. They
can handle non-convex objectives [AST09] and escape from local optima due to their
randomized subcomponents [Luk13].

By extending them to MOGAs, GAs can readily handle the multi-objective optimization
arising in PAMONO. Several MOGAs that have been demonstrated to be successful
in practice are available, e.g. NSGA-II [DPA+02], SPEA2 [ZLT01], PAES [KC99] or
SMS-EMOA [BNEO0T7].

One of the goals during PAMONO prototype development is identification of the
trade-offs between opposing objective functions. In this context, the fact that MOGAs
are population-based pays off: They do not only evolve a single parameter set, but
create a so-called front of Pareto-optimal points (cf. Section 3.7.4), containing different
parameter sets that are non-dominated with respect to the objectives. From this
front, the trade-offs between objectives can easily be identified. In this regard, the
mechanisms of diversity preservation that are present in most MOGAs are another
beneficial feature: Diversity preservation encourages the parameter sets to be widely
spread across objective space, such that points succeeding in either of the objectives
can be found. Doing so enables thorough exploration and examination of the trade-offs
between objectives.

Randomization is advantageous in scenarios with a high-dimensional parameter space but
low effective dimensionality [BB12]. In GAs, randomization occurs in the initialization,
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mutation and crossover components, cf. Section 3.7.3. The advantageous effects of
randomization can be summarized as obtaining better results quality while using
considerably fewer function evaluations. These effects were shown in comparison to
grid search for optimization problems where the parameter space consists of dimensions
with different importance for the objective value: Randomized search strategies better
handle'® the case of low effective dimensionality, i.e. the case where only a subset of
the parameter dimensions has a large influence on the objective. In practice, this is
often the case [CMO97].

o Despite employing randomized subcomponents, GAs harvest the advantages of exploiting
knowledge from previous evaluations, as e.g. meta-modeling does. Knowledge acquired
during simulated evolution is in effect where new parameter sets are generated from
well-performing old parameter sets.

e As a last point, GAs lend themselves to parallelization: Objective values for multiple
parameter sets can be computed simultaneously by distributing the parameter sets to
different compute nodes. Communication overhead is very low because the data to
be processed needs to be transferred only once, and parameter sets typically are very
small in comparison to that data. For PAMONO data analysis, each compute node
needs to have a Graphics Processing Unit (GPU) because it executes the bulk of the
computation. A system for distributing PAMONO evaluation across a compute cloud
is presented in [LMS+14].

With the rationale for choosing a MOGA in implementing the Optimization stage of
SynOpSis given, this class of algorithms is now briefly summarized, and required terminology
is introduced. Section 3.7.3 covers genetic algorithms in general, while Section 3.7.4 provides
extensions for the multi-objective case. These abstract depictions of concepts lead to a
concrete MOGA implementation in terms of NSGA-II [DPA+02] in Section 3.7.5. Finally,
Section 3.7.6 describes how optimization of SynOpSis can be conducted in a global and in a
sequential fashion. Note that the depiction of the overall genetic algorithm used to optimize
SynOpSis in the context of PAMONO is given later, in Section 7.3.2 because it is closely
associated with the experiment description.

3.7.3 Genetic Algorithms

A key difference between Genetic Algorithms (GAs) and many other search heuristics is that
GAs are population-based methods, maintaining more than one candidate solution at a time.
In conjunction with the fact that GAs are heavily inspired by biological evolution, this leads
to a whole new terminology employed in the context of GAs, which will be introduced in this
section, following the textbook by Luke [Luk13]. The order of presentation is bottom-up.

Terminology 3.2. A gene corresponds to one parameter to be optimized and thus to one
dimension of the parameter space. A fixed length vector of genes is denoted a chromosome
and can be used to represent a point in parameter space, i.e. a complete parameter set. The
objective functions, mapping chromosomes from parameter space to objective space are denoted
fitness functions. Consequently, the point in objective space obtained by evaluating all
fitness functions for a given chromosome is called its fitness. A candidate solution is denoted
an individual. One can refer to an individual in parameter space as well as in objective space,

YFigure 1 in [BB12] very well illustrates the reason for this.
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Figure 3.7: Genetic Algorithm (GA) Terminology and Operations. Each of the four columns shows a
population consisting of seven individuals. Each individual is represented as a chromosome,
which is a vector of genes. In the example, the number of genes is eight. Each gene encodes
one parameter to be optimized. A GA first selects individuals, e.g. by tournament selection.
The selected individuals are recombined via crossover, i.e. by exchanging genes. The figure
shows two instances of one-point crossover. Subsequently individuals undergo mutation, i.e.
randomly picked genes are assigned new values. After crossover and mutation, the resulting child
individuals become the next generation of the GA, along with the elite (i.e. best-performing)
individuals in the parent generation (here: first two and last line). Figure adapted from [Luk13].

denoting the chromosome of the solution and its fitness, respectively. A set of individuals is
called a population. One iteration of a GA is called o generation. Homonymously, the
respective population generated in that iteration can also be denoted as a generation.

Figure 3.7 illustrates this terminology and furthermore introduces three crucial operations
involved with GAs: selection, crossover and mutation. These are described now, in the
context of a detailed explanation of Algorithm 3.1, following [Luk13]. This algorithm is a
basic, single-objective GA with elitism, i.e. the best-performing individuals in each generation
are maintained in the subsequent one. Elitism has been demonstrated to increase speed of
convergence for Multi-Objective Genetic Algorithms (MOGAs) [ZDT00; Rud99], that will
be discussed in Sections 3.7.4 to 3.7.5. Algorithm 3.1 receives as inputs the size S of the
population in each generation, along with the number G of maximum allowed generations
and the number F of elite individuals that are passed on to the subsequent generation. The
output of the algorithm is the chromosome x* € P¥ of the best-performing individual that
was encountered in the course of the GA. P¥ is the P-dimensional parameter space, where
P is a placeholder for other sets: Each dimension of P may be from a different set, e.g.
booleans, ordered/unordered discrete values or real values.

Initialization of the population X with S individuals from P? is the first step in the GA.
Typically, an individual x € P? is initialized by drawing each of its gene values randomly
from the set of values allowed for that gene. The distribution from which it is drawn may
be biased towards regions known to contain good values for that gene. Furthermore, it is
possible to include entire individuals known to perform well, or handcrafted individuals into
the initial population.

After initialization of the population, the best-performing individual x* is initialized to
the dummy individual O to indicate that no individual was evaluated yet. Furthermore, the
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Algorithm 3.1 Genetic Algorithm (GA) with Elitism [Luk13]

Input: Population size S, number of generations G, elite size E, with S — E even
Output: Best-performing individual x*

X « initializePopulation(S) //..................... e.g. random values for all genes
X" <O

g L initialize generation counter
d<false [/ ... . ‘done’-flag for termination

while -d do
for each individual x* in X do

Yo 0(XY) /) evaluate and remember fitness
if (x*=0)v (' >y*) then
x* « x [] e x' performs better than previous best x*, thus update
TR T also track best observed fitness
end if
end for
X < getElite(X,E) // ......... E fittest individuals from X, random choice for ties
for (S - E)/2 iterations do
x® < selection(X) // ... select parent x* from X
x? < selection(X) // ... select parent x from X
X4, R « crossover(x®,x%) //..................... create two children via crossover

X* « mutation(X%)
b — mutation(X)
X < append(X,R%,RY) // oo append new individuals to X

X

end for

end while
return x*

generation counter ¢ is initialized to 1 and the termination flag d is set false. Then, as long
as d remains false, the following procedure is carried out: Firstly, for each individual x* in
the current population X, the fitness function p(x) is evaluated, yielding the fitness value 3.
If x* is the dummy O or if 3° is better than the current best observed fitness y* of x*, then
x* and 3' become the new x* and y*. Whether 3’ is better, is determined with the better
than-relation > between scalar objective values: If objective ¢ is to be maximized, y' > y*
means 3 > y* and if it is to be minimized, it means y’ < y*.

With all fitnesses known for the current population X, its elite is determined by identifying
the E best-performing individuals in X. Among individuals with identical fitness, random
draws are conducted until the number E has been reached. The elite is stored in the population
for the next generation, denoted as X. The remaining S — E individuals are generated within
(S - E)/2 iterations of a breeding process, consisting of selection, crossover and mutation,
as described now. Each iteration of this process creates two new individuals.



3.7. Optimization Stage 53

Selection is the first operation in the breeding process. The selection technique determines
how individuals are picked for breeding. The most common selection technique is tournament
selection [Lukl13]: In a tournament of size T" € N,(, one individual is drawn at random from
a population to sequentially compete against T — 1 other individuals. In each iteration, a
competitor individual is drawn at random from the population and if it is better in terms
of fitness, it becomes the new best individual observed within this tournament. The best
individual after the last iteration wins the tournament and is selected. Note that for 7' =1,
tournament selection becomes random selection and that for increasing T, it becomes
increasingly selective because high fitness values become more and more important in order to
win a tournament. Further selection techniques, like fitness-proportionate selection and
a variation thereof, called stochastic universal sampling, can be found in the literature
[Luk13].

Crossover follows selection and uses the two selected parent individuals to form (usually)
two child individuals by exchanging parts of their chromosome. Figure 3.7 shows two
examples of the so-called one-point crossover: A random crossover point is selected in the
chromosomes of the two individuals to be crossed over, and the gene values following that
crossover point are swapped between the two individuals. Note that in one-point crossover
the probability of breaking e.g. the first and last entry of the chromosome vector apart is
much higher than for two adjacent entries in the vector. This can cause so-called linkage
problems, namely if parameters that need to work together to attain a good fitness have
a high probability of being broken apart. To resolve this, one can either place them closer
together on the chromosome, thus increasing the probability that they will be crossed over
en bloc, or one can choose two-point or uniform crossover: Two-point crossover chooses
two crossover points instead of only one, and swaps the gene values between those points.
Uniform crossover swaps each gene value independently with a certain probability. Note
that a simulated evolution using solely one of these crossover mechanisms can not generate
individuals outside the bounding box in parameter space of the initial population: Such an
evolution would be a local and not a global search.

Mutation is a mechanism that enables the simulated evolution to escape the bounding
box of its initial population and that makes it a global search. In general, mutation means
that randomly chosen genes in the chromosome of an individual are assigned new values
determined in some randomized way, as illustrated for four individuals in Figure 3.7. Assigning
randomized values to randomly picked dimensions in the parameter space obviously allows the
search to escape the bounding box in parameter space of the initial population. Furthermore,
it makes every point in parameter space reachable with non-zero probability, hence making
the search global. Mutation is carried out immediately after crossover in Algorithm 3.1. Note
that different types of genes require different mutation procedures. For genes encoding binary
variables, the bit-flip mutation is very common. It inverts the bit value in each binary gene
with a given probability. For genes encoding integer variables, integer randomization can
be used, where randomly chosen genes are assigned new random values from their sets of
allowed values (as in Figure 3.7). An alternative is random walk mutation, where the old
gene value is used as the starting point of an integer random walk, the end point of which
becomes the new gene value. For genes encoding floating point variables, usually Gaussian
convolution is used as the mutation operator: For randomly chosen genes, values drawn
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from a Gaussian distribution with zero-mean and a certain variance are added to the value of
the gene.

After selection, crossover and mutation, Algorithm 3.1 continues by appending the two
newly bred individuals to the population X containing the elite from X. After (S - E)/2
iterations of this breeding loop, X contains S individuals and is used as the population of
the next generation. The generation counter is increased by one and termination criteria
are checked: If y* already is the best-possible attainable value of the objective, or if the
maximum number G of generations has been reached, the main loop terminates, and the
parameters x* of the best-observed individual are returned.

3.7.4 Multi-Objective Genetic Algorithms

Algorithm 3.1 from the previous section specifies a basic, elitist GA for the single-objective case,
i.e. only one objective function is optimized. The key difference between the single-objective
and the multi-objective case is comparability between fitness values: In single-objective
optimization, fitness values are scalar and therefore inherit the ordering of the underlying set,
usually R. Given two scalar fitness values y?,3? € R, it can be decided, which one is better,
using the < or the > relation on R, so comparability between individuals is not an issue. In
contrast to that, in multi-objective optimization, fitness values are vectorial quantities. Given
two vectorial fitness values y?, y® € R?, where O is the number of objectives, it can occur that
y® is better than y® in one objective while worse in another, and fitness values can not readily
be compared. In order to generalize GAs to the multi-objective case, this comparability issue
must be handled, requiring new terminology which is introduced now. Extending GAs in
this direction gives rise to the concept of Multi-Objective Genetic Algorithms (MOGAs).
Following [Deb01] and adapting the notation used therein, the following definition is made:

Definition 3.1. Let x* x° € P¥ represent two individuals a and b as chromosome points
in the P-dimensional parameter space PY. Let p;(x) € R,i € {1,...,0} denote the value
of objective function @; as obtained by a parameter space point x. As the number of such
objective functions is O, the objective space is R9. Let 1> denote the better than-relation
between scalar objective values: If objective i is to be mazimized, p;(x®) > i(x°) means
©0i(x2) > @i(x®) and if it is to be minimized, it means @;(x%) < p;(x®). Then the parameters
x® are said to dominate the parameters x° if the following conjunction of conditions holds:

Vie{l,...,0}: ¢;i(x%) ¥ ©i(x) (3.6)
AFje{l,..., 0} ;(x%) B> p;(xP).

b

The first line requires that the dominating point X® is not worse than x° in any objective 1,

while the second line requires that it is strictly better in at least one objective j.

In that case, a reasonable decision-maker would prefer x* over x°, which can be regarded

b making these individuals comparable. Besides this simple

b neither x* dominates x’, nor x’

as an ordering of x* before x
case, it can also occur that for two parameter sets x%,x
dominates x®. If the individuals are not identical, then there is at least one objective that is
better in x* and one that is better in x°. In that case, a reasonable decision-maker can not
(without introducing assumptions about the relative importance between objectives, bearing
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the danger of comparing apples and oranges) decide which one to prefer. If this is the case,
x® and x® are called incomparable [ZBTO07]. A particularly important set of incomparable
points is the set of non-dominated points, introduced in the following definition [Deb01]:

Definition 3.2. A point x® € P¥ is called non-dominated if there exists no x* € P¥, that
dominates x*. The set of all such non-dominated points is called the non-dominated set,
or alternatively the Pareto front or Pareto-optimal set.

Note that this definition assumes knowledge of objective values ¢;(x) for every x € P¥.
Usually in optimization, no analytic forms of the ¢; are available (only in toy problems) and
their evaluations are expensive. Therefore, in practice, the terms from Definition 3.2 are
usually regarded with respect to the points x that were already visited during the optimization.
That means the Pareto front consists of those parameter vectors that are non-dominated
among the already visited (and kept?®) parameter vectors. This concept of a non-dominated
set is also referred to as an approximation set [ZBTO07] because its elements may be
dominated by the exact Pareto-optimal set considering all points in parameter space [Deb01],
cf. Figure 3.8a for an illustration. The key difference in the quality of MOGAs lies in how
well their computed approximation set captures the true Pareto front. This involves not
only the distances between the computed fitness vectors from the true front, but also how
well these fitness vectors are spread over the entire extension of the front. This concept of
spread over the front is denoted as the diversity of the approximation set. High diversity is
required for analyzing the trade-offs between objectives. Furthermore, it enables a reasonable
decision-maker to pick a design point from a wide range of options in objective space. The
ideal is a uniform distribution of the approximation set on the entire (unknown) theoretical
Pareto front, enabling thorough examination of the available options.

Given these prerequisites, the following issues can be identified that are to be addressed
when designing a MOGA:

e« Comparison of vectorial fitnesses as arise in multi-objective optimization must be
enabled. The comparison relation is required for selection (and for determining the elite,
in case of an elitist algorithm). Comparison is usually based on the Pareto-dominance
relation. The tricky part is to decide between individuals that are incomparable with
respect to the Pareto-dominance relation.

o Diversity of the computed Pareto front should be encouraged by the search strategy.
Preservation of diversity may be used as a criterion aiding comparison and thus help in
addressing the previous point.

o Elitism can optionally be implemented in a MOGA. Doing so has been demonstrated
to increase convergence speed [ZDT00; Rud99].

Typically, MOGAs must use larger population and elite sizes than their single-objective
counterparts because the number of individuals required to cover all regions of a Pareto front
is larger than for finding a single optimized individual: It grows exponentially in the number
of objectives to be optimized [Luk13].

Now that the goals, required terminology and issues to be addressed in designing a MOGA
have been presented, a popular representative of this class of algorithms is summarized:
NSGA-II [DPA+02].

20Deciding which points to keep in the population is an important problem in population-based methods,
especially in the presence of multiple objectives, cf. Section 3.7.5.
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Figure 3.8: Pareto Front and Ranks. (a) shows the true Pareto front (in objective space) of an analytical
toy problem as a green curve and an approximation to this front, found by a MOGA, as blue
stairs. In real-world problems, the true Pareto front is typically unknown. The non-dominated
set found by the MOGA is depicted as large blue squares, whereas dominated points are marked
by small gray squares. The non-dominated points may lie on the true front as well as behind it,
while the dominated points necessarily lie behind the front. The goal of a MOGA is to converge
to an approximation set located as closely as possible to the true front, while being spread
uniformly across it. (b) illustrates the concept of Pareto ranks as used e.g. by NSGA-II: The
non-dominated points have Rank 1. If these points were removed from the set, the non-dominated
points of the reduced set have Rank 2, analogously for higher ranks. Figures adapted from
[Luk13].

3.7.5 Non-Dominated Sorting Genetic Algorithm IT (NSGA-II)

Among the multitude of MOGASs available in the literature (e.g. NSGA-II [DPA+02], SPEA2
[ZLT01], PAES [KC99] or SMS-EMOA [BNEO07]), the Non-Dominated Sorting Genetic
Algorithm IT (NSGA-II) by Deb et al. [DPA+02] was chosen as the algorithm governing the
Optimization stage of SynOpSis (cf. Figure 3.2). The reason for this choice was its consistent
success in very diverse applications, as reported e.g. in [ARR+07; BN07; DK07; DPMO00;
GBGO05; HBK10; KBM+09; MKBO09].

NSGA-II will be briefly summarized now, with a presentation that proceeds along the list
of issues to be addressed in designing a MOGA, as given at the end of the previous section.
Unless otherwise stated, the depiction follows the original paper by Deb et al. [DPA+02].

Comparison of vectorial fitness values is done with respect to two quantities: Pareto ranks
and sparsity. Pareto ranks are the primary criterion and will be explained here, while sparsity
is treated as a black box for now and will be explained in the next paragraph about diversity.
Figure 3.8b illustrates the concept of Pareto ranks: It shows a 2-D objective space where
both objectives are to be minimized. Rank 1 consists of the non-dominated points and hence
equals the computed Pareto front. If the points with rank 1 were removed and the front
recomputed, the resulting new front consists of the points in rank 2, analogously for all
further ranks. Generally speaking, rank ¢ contains all points that are dominated only by the
points in ranks 1 —1,7—2,...,1. Computing Pareto ranks is denoted as non-dominated sorting
which gives NSGA-II its name. One of the major contributions of NSGA-II is a fast exact
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algorithm for non-dominated sorting: A naive implementation of non-dominated sorting has
time complexity O (053) and storage complexity O (.5), where O is the number of objectives
and S the population size. NSGA-II reduces time complexity to O (OSQ) while increasing
storage complexity to O (52). Another major contribution of NSGA-II is an approach to
comparing vectorial fitnesses: It uses the crowded-comparison relation >,, which employs
Pareto ranks as the primary, and sparsity as a secondary criterion in comparing vectorial
fitnesses. Up to its description in the next paragraph, sparsity can be taken as a black box
quantity, measuring for each individual, how rare similar individuals are in objective space.
The comparison relation >, is defined as follows: For two objective vectors y?,y® € R, the
relation y® >, y®, meaning y® is preferred over y?, holds if one of the following conditions
holds:

 The Pareto rank of y® is smaller than y®. This means y® dominates y® in the classical
sense of Definition 3.1.

e The Pareto rank of y® is equal to that of y, i.e. y* and y® are incomparable in the
classical sense, and the sparsity of y® is larger than that of y°, i.e. individuals performing
similarly to y® are rarer in objective space.

Otherwise y® >, y*. To put it shortly, NSGA-II compares individuals by preferring lower
Pareto-ranks, and it breaks ties in ranks by preferring higher sparsity. Note that objective
values are not used directly in the definition of >,,, but indirectly, within the computation of
Pareto ranks and sparsity. NSGA-II uses the >, relation typically in a tournament selection
scheme with tournament size T = 2. Furthermore, >, finds application in determining the
elite individuals.

Diversity preservation and encouragement follow the goal of obtaining a set of non-
dominated points that spreads over the entirety of the theoretical Pareto front of an opti-
mization problem. In NSGA-II, diversity is preserved and encouraged by using sparsity as a
secondary criterion in comparing individuals. Sparsity of an individual is computed by the
following procedure: For each objective separately, only individuals in the same Pareto rank
are regarded, and among those, the two individuals with the next smaller respectively next
larger value in that objective are determined. If one of these neighbors can not be found,
the individual resides on the boundary of its rank and is assigned infinite sparsity. If both
neighbors exist, their difference in the regarded objective is normalized by the range of that
objective. These normalized differences are accumulated over all objectives, and the resulting
sum defines the individual’s sparsity. Hence the further away the neighbors in objective
space, the higher the individual’s sparsity and the rarer similar individuals are in objective
space. Preferring individuals with higher sparsity makes individuals in less crowded regions
of objective space win tournament selection in case of equal Pareto ranks. This obviously
preserves and encourages diversity of the computed front.

Elitism in NSGA-II is achieved by maintaining two separate populations in each generation:
XP? is the parent population, corresponding to the elite individuals, which mate and generate
the children population X¢. Now the parent and children populations X?,X¢ for the next
generation are obtained as follows: Pareto ranks for the union of the previous X?, X¢
are computed using non-dominated sorting. The elite parent population XP for the next
generation is filled up to the elite size E, starting with the individuals of rank 1, i.e. with
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the non-dominated Pareto front of the union of X? and X¢. This is continued until the rank
i is reached that would exceed F if added to XP. For this rank, the >, relation is used to
determine the best individuals, which are appended to X? until it contains E individuals.
Now from this next generation elite population XP, the next generation working population
X¢ is bred, running a breeding loop as in Algorithm 3.1, with tournament selection using
the >, relation and typically tournament size T" = 2. This process is iterated in the next
generation, starting from X? and X¢. Note that NSGA-IT in its original implementation uses
an elite size F that is equal to the population size S, i.e. the elite population contains as many
individuals as the working population. This choice is not a necessity but just a heuristic, and
Deb et al. do not argue for it [DPA+02]. Keeping the elite and working populations separate
constitutes a difference to Algorithm 3.1, where the elite is a subset of the working population
and only S — F individuals undergo the breeding process. Instead, NSGA-II determines its
elite of size E from non-dominated sorting of S + E individuals and stores it in an external
archive, from which S new individuals are bred.

3.7.6 Global versus Sequential Optimization of SynOpSis

With NSGA-II selected as the algorithm to implement the Optimization stage of SynOpSis,
two approaches to conducting this optimization can be taken, that will be explained in the
following paragraphs.

Global optimization is the approach visualized in Figure 3.2: The top line of the opti-
mization loop, starting with the pattern detector and ending with the classifier is executed
as a whole before any evaluation of objective functions is done. That means parameters of
the detector and classifier are optimized simultaneously, and one pass of the optimization
loop involves both, detector and classifier. Consequently, one individual in this optimization
consists of detector and classifier parameters. Computing the fitness of an individual means
computing the objectives of the detector (e.g. Recall and M-Rate, cf. Section 3.5.2) and
those of the classifier (e.g. Recall and Precision, cf. Section 3.6.2), and these objectives are
optimized simultaneously. Doing so enables devaluation of individuals containing detector
parameters that produce patterns which are hard?!' to be classified correctly: In this case,
objectives measured for the classifier will have poor values, and the associated individual can
easily be dominated in these objectives. This can have a positive influence on results quality
in practice because it implements a feedback mechanism from the classifier back to detector
parameters.

Sequential optimization can not benefit from such a positive influence: In sequential op-
timization, the detector and the classifier are optimized separately, with classifier optimization
depending on the results of detector optimization, but without any possibility of influencing
it. In contrast to the global optimization depicted in Figure 3.2, sequential optimization
involves two optimization loops, each with separate evaluations of objectives. The first loop
optimizes detector parameters with respect to the detector objectives. Feature extraction is
not necessary. Instead, the objectives are evaluated immediately on the detected patterns,

2!'Exemplary causes making patterns hard to classify can be adversely shaped pattern representations, or
image processing settings in pattern detection that exert negative effects on the subsequent computation of
features.
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which is possible because they relate solely to detection performance. This optimization
yields a Pareto front of parameter sets for the detector, among which the best-performing one
is selected using the desirability approach presented in Section 3.8. The patterns detected
using this parameter set are then passed to feature extraction, and the feature-annotated
patterns are the input of the second loop that optimizes classifier parameters, solely with
respect to classifier objectives.

Regardless of whether the Optimization stage is run in a global or sequential fashion, the
type of output is the same, consisting of optimized detector and classifier parameters that
have been chosen from their Pareto front(s) by the desirability approach in Section 3.8 in
combination with the model selection in Section 3.9. How these parameters are used in
analyzing the real sensor input data is described in the context of the Application stage from
Figure 3.2, cf. Section 3.10. The overall configuration of the MOGA as used in the PAMONO
scenario belongs to the experiment description that can be found in the evaluation chapter,
cf. Section 7.3.2.

3.8 Desirability Functions for Formalizing Expert Preferences

The concept of desirability as a formal way of expressing expert preferences was first introduced
by Harrington [Har65] and has since then been used extensively in the context of multi-
objective optimization [BM91; Wu04; MT06; PN06; MTTO07; JK09; TM09]. Two key benefits
of using desirability in multi-objective optimization are as follows:

1. Automatic selection of the most desirable individual from a Pareto front is
enabled by the desirability approach because it allows stating preferences of expert users
in a formal way: The desirability approach is a nonlinear technique for aggregating
multiple objectives in a scalar number. Nonlinearity allows modeling more complex
relations between objectives than is possible with linear scalarization techniques like
weighted summation. Once formalized, the expert preferences can be automatically
applied to a given Pareto front, yielding the single most desirable individual on the
front. In this scenario, the desirability approach is used solely after optimization.

2. Narrowing the search to the relevant part of the Pareto front, on the other
hand, is enabled by applying the desirability approach during optimization: Instead of
searching across the entire Pareto front, the limited population and elite sizes are used
more efficiently by focusing them in the relevant part of the front. This capability is
achieved by transforming each dimension of the original objective space with a so-called
Desirability Function (DF). After this transformation, individuals in undesirable parts of
the front in the original objective space are likely to be dominated in the DF-transformed
objective space. In turn, they are unlikely to be selected for breeding new individuals.
Thus the search is directed toward the desirable regions of the front.

Section 3.8.1 provides the relevant background about Harrington’s DFs, applied to
normalize single objectives, while Section 3.8.2 presents Desirability Indices (DIs) as a way
of aggregating DFs to scalar objectives. After these backgrounds have been established,
Section 3.8.3 depicts how DFs and DIs are used in SynOpSis for picking a single best
individual from a Pareto front and for guiding optimization. The concrete desirability setting
used for PAMONO is part of the experiment description and hence given in Section 7.3.3.
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Figure 3.9: Two-Sided Harrington Desirability Functions — Examples. (a) shows Desirability Func-
tions (DFs) with varying kurtosis parameter n and constant lower and upper specification limits
l=-1,u=1. (b) keeps n = 3, while varying [ and u. Note that the peak of the DFs is attained
halfway between [ and u, and that changing [ and u while keeping u — [ constant yields translates
of the same function.

3.8.1 Harrington Desirability Functions

Computation of the Desirability Function (DF) for a given objective can be regarded as a
normalization step: Regardless of the range occupied by an objective, and whether it is to be
minimized or maximized, its DF is always between zero and one and must be maximized.
Besides actual objectives, (especially soft) constraints can also be rephrased in terms of DFs,
where the desirable values (close to one) correspond to the interval where a constraint is
fulfilled.

SynOpSis uses Harrington’s two-sided DF [Har65] for the reasons given after presenting
its formal definition which follows [TWO06]:

5(y) = exp (- ‘W‘ ) (3.7)

Here, d(y) € ]0,1] is the desirability of objective value y € R, and I,u € R are the lower,
respectively upper specification limits, which determine the interval of values for y that are
deemed desirable. Finally, n is the kurtosis parameter determining the peakedness of the DF.

Figure 3.9a illustrates the kurtosis parameter n by plotting example functions obtained
from varying n, while keeping | = —1,u = 1 constant. Increasing n makes the peak of
the resulting curve flatter, resulting in a plateau close to one of nearly equally desirable
corresponding values of y. Decreasing n makes the peak more spiky, narrowing the interval of
fully desirable values of y, but widening the tails of the function. Figure 3.9b demonstrates
the effect of changing the lower and upper speciﬁc(atil())n limits [, u, while keeping n constant.

-

The peak of the function is always located at [ + ~=~. Changing [ and u while keeping the

difference u — [ constant yields translates of the same function.
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For SynOpSis, Harrington DFs were chosen because their non-zero tails give them the
ability to distinguish different points below the lower specification limit (up to numerical
precision). This is an advantageous property because the optimizer is pulled into the direction
of improvement even for those individuals that do not meet the lower specification limit:
Degrees of undesirability in undesirable individuals can be distinguished and “less undesirable”
individuals are more likely to take part in breeding in the context of MOGAs. As a downside,
Harrington DFs also distinguish different points above the upper specification limit, unless
modified accordingly. In some contexts, e.g. if for satisfied constraints desirability should be
plainly one, this is an adverse property because distinction of different degrees of constraint
satisfaction is not always intended. For such cases, Derringer-Suich DFs [DS80] can be used,
which are flat one for values above the upper specification limit. Note however, that these in
turn, do not distinguish points below the lower specification limit. In SynOpSis, indifference
between points above the upper specification limit is not essential because for the optimized
objectives (cf. Sections 3.5.2 and 3.6.2) “better is always better”.

Besides the two-sided Harrington DF from Equation (3.7), there is a one-sided version
using a double exponential [TWO06]. It is called one-sided because the desired interval is
bounded on only one instead of two sides. In SynOpSis, the objectives are in fact one-sided:
They are either to be minimized or maximized. However, they are bounded and thus also
have a target value, which enables using two-sided DFs with the peak placed over the target
value. Hence both kinds of DFs are eligible to be used in this case. The two-sided version was
chosen because it provides a measure of controlling kurtosis via n, which the one-sided version
does not. This additional control enables highly spiky DFs with long non-zero tails. This is
useful for objectives like detector Recall: More detector Recall is always more desirable, but
it must also be possible to distinguish low values of it to guide optimization into the right
direction. This heuristic can very well be modeled using the two-sided Harrington DF.

3.8.2 Desirability Indices

While computing DFs is a normalization step applied separately to multiple objectives,
computing a Desirability Index (DI) is a scalarization step, aggregating the DFs of multiple
objectives into a single scalar number. The most commonly used function for aggregating
DFs is the geometric mean [TWO06], and the geometric mean DI is defined as

o 1/0
A(y) = (11 5%%)) , (38)

where O is the number of objectives, 6° is the DF using n’, %, u’ specific to the ith objective,
and y; denotes the value attained in that objective. The geometric interpretation of the
geometric mean of O values is that for an O-dimensional hyperrectangle with side-lengths
equal to these values, it gives the side-length of a hypercube containing the same hypervolume
as the hyperrectangle. Notably, it is zero if one of the input side-lengths is zero, since the
hypervolume enclosed by the hyperrectangle then becomes zero.

As a consequence, if DFs are aggregated using the geometric mean as DI, all objectives
need to have desirable values to assign an individual a high DI. One objective with low or
zero desirability devalues?? the entire individual. Therefore, individuals from the front that

22This is a strong contrast to linear scalarization methods, where bad values in one objective can be
compensated for by good values in another.



62 Chapter 3. The SynOpSis Approach

fail in at least one objective would, despite their Pareto-dominance, never be chosen as the
best individual from the front. Another advantage of the geometric mean DI is that it enables
easy identification of cases where the optimization failed to produce an individual that is
reasonably strong in all objectives: Then the DI is below a certain threshold, and the failure
can be reported to the user, instead of continuing analysis with possibly very bad results.
Furthermore, the following important property holds for the geometric mean DI:

Lemma 3.1. If the geometric mean DI over strictly monotonic DFs of multiple objectives
is optimized as a single objective, the obtained maximum is non-dominated in the original
objective space, among the individuals visited during that optimization, i.e. it resides on the
approzimated Pareto front in multi-objective space.

Proof. Assume the individual with maximum DI is not on the Pareto front in the original
objective space. Not being on the front means that there exists an individual on the front that
dominates the individual with maximum DI. Using Definition 3.1, the dominating individual
is better in at least one objective, and not worse in any other. By strict monotonicity of the
employed DFs, it follows that at least one DF in the geometric mean in Equation (3.8) is
larger for the dominating individual. Then, as a product grows if one of its factors grows, the
geometric mean in Equation (3.8) is larger for the dominating individual, contradicting the
assumption that the geometric mean of the individual with maximum DI is maximum. [

Similarly, optimizing objective DFs in a multi-objective fashion yields a Pareto front in
desirability space that is non-dominated in the original objective space, if the employed DFs
are strictly monotonous. An alternative to the geometric mean DI is taking the minimum
among objective DFs as the DI [TWO06]. This does, however, not guarantee a property
analogous to Lemma 3.1.

As a conclusion from this section, arbitrary subsets of objectives and constraints can be
scalarized in DIs, after or during optimization. It is possible e.g. to create a combined DI for
all objectives and another one for all constraints, enabling monitoring of objective attainment
and constraint violation over a large number of objectives and constraints in a single 2-D
plot. Maxima with respect to strictly monotonous DFs or with respect to the geometric
mean DI are non-dominated in original objective space, among the individuals created during
optimization.

3.8.3 Desirability in SynOpSis

In the introduction of this section, automatic selection of the most desirable individual from
a Pareto front and narrowing search to the relevant part of the Pareto front were named
as the two key benefits of using the desirability approach in multi-objective optimization.
SynOpSis makes use of both, but in different scenarios.

The “desk” scenario takes the perspective of algorithm design and problem analysis.
Here, the desirability approach is applied solely after optimization, for automatically selecting
the best individual from the obtained Pareto front. Optimization is multi-objective in the
original objective space, enabling its thorough exploration and analysis of trade-offs between
the objectives because the full front is searched.
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The “lab” scenario is more application-oriented, taking the perspective of lab workers
applying SynOpSis in analyzing PAMONO or similar data. Here the search is narrowed to
the relevant part of the Pareto front by applying the desirability approach already during
optimization, which can be done in two ways: The first way is multi-objective optimization
of DFs, integrating expert preferences into searching in a subregion of the original Pareto
front, located in the relevant part of objective space. The second way is single-objective
optimization of the DI, searching for a single best individual that performs well in every
constituent objective. In comparison to not applying the desirability approach, both ways, in
theory, enable two benefits: Solutions of the same quality may be found with fewer evaluations,
and if fitness is not yet saturated, better solutions may be found with the same number of
evaluations. These benefits are important in the lab, where time is a constrained resource:
Optimization must be as quick as possible, while maintaining results quality. Note that the
concentration on the desirable part of the Pareto front seemingly contradicts the purpose of
the diversity preservation mechanisms common in MOGAs. However, desirability mechanisms
are a way of constraining diversity in a controlled and target-oriented manner. The resulting
search in the desirable part of the front still benefits from diversity in that desirable part.

The concrete desirability settings used in PAMONQO data analysis are part of the experiment
description and hence given in Section 7.3.3.

3.9 Model Selection and Performance Estimation

Bergstra et al. consider manual tuning of algorithmic parameters to make them suit a given
problem instance as something “more of an art than a science” and suggest that “hyper-
parameter optimization should be regarded as a formal outer loop in the learning process”
[BBB+11]. While referring to machine learning tasks only, their suggestion may prove
beneficial in other contexts as well. SynOpSis explores this suggestion in the context of its
consecutive pattern detection and classification task by implementing optimization of all
relevant parameters as an outer loop around the approach depicted in Figure 3.2. Unleashing
the full potential of parameter optimization requires mechanisms that avoid overfitting the
parameters to the dataset they are optimized on [SH97|. Here overfitting means, that
the parameters may perform well on the dataset upon which they were optimized (because
they were optimized to do so) but they do not generalize well, i.e. their good objective
values do not carry over to other datasets. Therefore, objective values that were measured
on the dataset used in optimization are not the quantities of interest. Instead, objective
values measured with respect to unseen datasets are considered, i.e. the generalization
performance of the parameters is estimated. Techniques for doing so are summarized in
Section 3.9.1. These techniques can be applied in parameter tuning, aiding the selection
of parameters that generalize best. This process is also referred to as model selection, and
is the topic of Section 3.9.2. Generalization performance is furthermore important as an
estimate of the performance of the finally selected parameters, that reduces undue optimism,
cf. Section 3.9.3. An example of how these mechanisms for model selection and performance
estimation can be implemented is given for PAMONO data analysis. It belongs to the
experiment description and can thus be found in Section 7.3.4. Computation of the final
classifying model used in the pattern classifier depends on this implementation and is therefore
detailed in Section 7.3.5.
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3.9.1 Generalization Performance

In machine learning, the term generalization performance refers to the quality a learned
predictive model attains in making predictions about unseen data. In a more general context,
it can be regarded as the results quality an algorithm attains for previously unseen input, given
a set of parameters. ‘Unseen input’ means that this input was not used in determination of
the parameters, eliminating the possibility of the parameters being overfitted to it. Note that
generalization performance does not relate to a specific performance metric: Any performance
metric can be used since the defining property of generalization performance is simply that the
metric is measured on previously unseen data. The goal of such measuring is reducing undue
optimism that would arise if quality was measured on the same dataset used in determining
parameters.

Various strategies for estimating generalization performance have been proposed in the
literature, many of which are summarized in [HTF09] for the context of machine learning.
The following list is not complete, but summarizes some of the most common strategies.
They all share the idea of disjointly dividing a given ground truth-annotated dataset into a
training set, used as input to train/optimize the algorithm upon, and a test set, used solely
for estimating generalization performance. Presentation of all strategies follows the work by
Kohavi [Koh95].

e Holdout simply divides the annotated data by sampling without replacement a training
set from it and using the complement as the test set. Typically, the training set comprises
% of the overall data.

« Random subsampling is also known as repeated holdout: The holdout strategy is
repeated K times with different random samples. This enables computation of e.g. the
mean generalization performance and its standard deviation, thus providing a measure
of confidence.

e Bootstrap sampling constructs a training set of size N by sampling with replacement
from the original dataset, also of size N. The data items not used in the training
(multi-)set are used as the test set. Like in random subsampling, this is repeated K
times.

e K-fold cross-validation partitions the original data into K subsets of approximately
equal size. The algorithm is trained/optimized K times, each time using another of
the subsets as test set and the union of the remaining K — 1 sets for training. Mean
and standard deviation of estimated generalization performance can be computed over
the K folds. For classification algorithms, bias and variance of this estimate can be
improved in most real-world tasks [Koh95], by creating the K subsets with stratified
sampling. This means the data is sampled such that the label proportions in each subset
are approximately equal to the label proportion in the original dataset. Stratification
can also be applied in the previously listed methods. If the K in K-fold cross-validation
equals the size N of the input dataset, the procedure is referred to as leave-one-out
cross-validation.

Any of these methods can be used as the strategy for generating the training and test sets
that are required for the model selection, respectively performance estimation procedures
presented in the next two sections.
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Figure 3.10: Generalization Performance over Complexity of Classifying Model. Prediction error
incurred on the training set monotonously decreases with increasing complexity of the classifying
model because more complex models can overfit the training data more, fully memorizing them
in the extreme case. Test set error exhibits a minimum at a certain complexity. Increasing
complexity beyond that minimum creates models that capture spurious peculiarities of the
training set that do not generalize to the test set. Model selection for classifying models aims
at finding the parameters producing the classifying model with optimum complexity. Figure
adapted from [HTF09).

3.9.2 Model Selection

‘Model selection’ is a term that originates in statistics and machine learning, where it denotes
the selection of a statistical/predictive model from a set of candidate models [HTF09]. The
underlying technique of estimating generalization performance to avoid overfitting the training
data is as well beneficial and applicable in optimizing algorithmic parameters. For this context,
the term ‘model’ in ‘model selection’ can be regarded as denoting a parameter set configuring
an algorithm.

While this term at first sight appears oddly defined, it maintains consistency with machine
learning terminology, where optimization of the parameters of learning algorithms is typically
carried out via model selection: A parametric learning algorithm is used to create a set
of candidate predictive models, given a set of training data and varying parameter sets.
Model selection then means selecting that parameter set which exhibits the best estimated
generalization performance on the test set. This parameter set is then used to learn the
final predictive model from the entire available data (training and test set). Therefore, in
this context, the entity that is selected during model selection is a parameter set configuring
an algorithm, and this concept can be transferred to optimizing parameter sets of other
algorithms, e.g. the pattern detector used in SynOpSis.

The key purpose of model selection lies in reducing the risk of overfitting the training
data by selecting a model with respect to estimates of its generalization performance. This is
beneficial in any parameter optimization task. Optimizing the parameters of a supervised
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classifier, however, provides a very intuitive notion of the merit of model selection, which will
be presented now as an example. In this context it is important to strictly distinguish between
the model, defined as the parameter set of the supervised classifier, and the classifying model,
defined as the predictive model obtained by running the learning procedure of the supervised
classifier, using training data and the given parameter set as inputs, cf. also Figure 3.5.
The parameter set of a supervised classifier controls, amongst others, the complexity of
the resulting classifying model and thus its ability to overfit the training data: The more
complex the classifying model, the more training data it can memorize. One extreme example
is k-Nearest Neighbors (k-NN) [HTF09] for k = 1, where the classifying model consists of
all training data points (lazy learning), and each new point is predicted to belong to the
class of its nearest neighbor in the training set. When applied to the training set itself,
this classifying model yields perfect results and constitutes a worst case of overfitting. Less
complex classifying models must abstract further from the training data which is usually
beneficial for generalization performance. Figure 3.10 demonstrates this: Prediction error for
the training set monotonously decreases with increasing complexity of the classifying model,
while for the test set, there is an optimum point. The divergence of the curves demonstrates
that training error underestimates test error, especially after complexity increases beyond the
optimum point. Model selection aims at finding the parameters producing the classifying
model with the complexity that optimizes generalization performance. For these parameters,
the classifying model abstracts far enough from the training set to generalize well, but not as
far as to become too simplistic to capture the concepts in the data.

While being demonstrated here for parameters of supervised classifiers, like the pattern
classifier in SynOpSis, the phenomenon of overfitting parameters to the training data applies
to optimizing its pattern detector as well: In this context, parameters can overfit the training
data by adapting specifically to spurious peculiarities in the training set that do not appear
in the test set and hence do not generalize. Here the relation to complexity is less obvious
than in classifying models, but it still exists: For example if a parameter needs to have a
certain value to work well on the training set, but is irrelevant for test set performance, then
a parameter set with that specific value can be considered more complex than one with any
different value. Algorithms with more parameters allow for more such cases and generally
for more overfitting, making model selection more important, the more parameters are to be
optimized.

Summing up, model selection for supervised classifiers and other algorithms optimizing
a loss function with respect to ground truth-annotated data is carried out as follows: The
available ground truth-annotated input data is divided into training and test sets, using e.g.
one of the division strategies presented in the previous section. A set of candidate models,
i.e. parameter sets, is created by optimizing the loss function on the training data. For each
such model, its generalization performance in the measures of interest (e.g. Recall, Precision,

..) is estimated with respect to test data, each measure yielding either a single value (e.g.
holdout), or a mean and its standard deviation (e.g. random subsampling, bootstrap, cross-
validation). Each measure assigns an estimated generalization performance to a parameter
set, similar to the test curve in Figure 3.10, but without subsuming the parameter space
in a single complexity axis. Model selection then outputs the parameter set yielding the
optimum estimated generalization performance, i.e. the best test set performance. In case of
multiple performance measures, the desirability approach from Section 3.8 can be used to
obtain a single combined measure, thus resolving Pareto-incomparability. By being computed
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on data not used in parameter optimization, the obtained measures do not involve the undue
optimism that would be caused by measuring on training data, cf. the training curve in
Figure 3.10. Therefore, model selection yields a model that generalizes well to unseen data,
instead of selecting the one that best (over)fits the training data.

3.9.3 Performance Estimation

Performance estimation, also denoted as ‘model assessment’ [HTF09], denotes the process of
estimating the performance a model will attain, when used on the original data which it is
supposed to handle. Performance estimation without prior model selection can simply be
done analogously to model selection, by estimating generalization performance, e.g. with one
of the strategies from Section 3.9.1. The only difference is that in performance estimation,
this process needs to be run only once, because there is only one model.

Performance estimation with prior model selection is slightly more complex, for the
following reason: Generalization performance of the finally selected model as computed
during model selection should not be taken as an estimate of the performance that model
attains on further unseen data because the model was selected to optimize performance on this
test set. This act of selection is again an optimization, just like the optimization that created
the candidate models for model selection. Hence the situation is exactly the same as in model
selection, taken one tier higher: The generalization performance computed in model selection
is an unduly optimistic estimate of generalization performance with respect to further unseen
data. The optimism arises because selecting a model with respect to performance attained on
a certain dataset, constitutes a transfer of information about that dataset, encoded in model
choice: The model/parameters are selected as to optimize performance on that dataset and
thus form a channel for information transfer. This observation is due to Scheffer and Herbrich
[SHI7] (cf. their Figure 1) and was made in the context of machine learning algorithms. The
issue, however, affects any scenario of model selection for parameter tuning, followed by
performance estimation. The effect aggravates, the more parameters there are to be tuned
because increasing numbers of parameters “widen the channel” across which the information
transfer can occur. For example in PAMONO data analysis this is particularly severe because
the detector alone has 28 parameters to be tuned, cf. Section 5.7.

As for being an iterated version of the issue that was already encountered in model
selection, the same methods can be applied for resolving it: Again, generalization performance
should be measured, but this time with respect to the process including model selection.
This introduces the need for a further dataset that is disjoint to the datasets used in training
and model selection. Following Hastie, Tibshirani, and Friedman [HTF09], the following
terminology is used:

Terminology 3.3. The training set denotes the data used as input in optimizing the
parameter set of an algorithm. The validation set denotes the data used in model selection,
i.e. in choosing the parameters to be finally used. The test set denotes the data used in
performance estimation, i.e. in estimating how well the finally selected parameter set will
perform on further unseen data.

Note that this definition of the term ‘test set’ contrasts with the typical usage of the term
in the context of model selection. Again, data division into these sets can be carried out using
e.g. one of the strategies in Section 3.9.1. Conducting performance estimation after model
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selection, by computing generalization performance with respect to the previously untouched
test set, avoids incurring the undue optimism described by Scheffer and Herbrich [SH97].
As can be seen from this and the previous section, model selection and performance
estimation exhibit a number of design choices, that should be taken in consideration of the
intended application scenario. The design choices are e.g. data division strategy and number
of repetitions or folds, if applicable. This needs to be done for both, model selection and
performance estimation. For PAMONO data analysis using SynOpSis, the design choices
are explained in the experiment description in Section 7.3.4. As computation of the final
classifying model depends on these choices, it is described after that, in Section 7.3.5.

3.10 Summary of SynOpSis and Application Stage

The Application stage is the last stage of SynOpSis and is illustrated at the bottom of
Figure 3.2. In contrast to the offline Synthesis stage and Optimization stage, it can be
executed in real-time, provided its components support this. The pattern detector, feature
extraction and pattern classifier used in the context of PAMONO data analysis are real-time
capable [LST+13a; LST+13b], cf. Section 7.5.8.

The following description will very briefly recap the way from optimizing parameters to
applying them to the real sensor input data, along the flow of data in Figure 3.2. References to
the sections that contain the respective details are given in footnotes. Two types of references
are distinguished: SynOpSis references provide abstract and general depictions of methods
used in SynOpSis, while PAMONO references describe concrete and application-specific
implementations of the respective methods, as they are used in PAMONO data analysis.

After the Synthesis stage®® generated ground truth-annotated data, the Optimization
stage?* finds a Pareto front of non-dominated parameter sets for the pattern detector?® and
classifier?®, using a Multi-Objective Genetic Algorithm (MOGA)?". A model selection?® with
respect to an unseen validation set is conducted to pick the final parameter set for detector
and classifier from the Pareto front. Pareto-incomparability of objective vectors measured
during model selection is resolved using Desirability Indices (DIs)?”. Performance estimation®’
for the finally chosen parameters is carried out with respect to an unseen test set.

After the final parameters have been determined, they are passed as inputs to the
Application stage, as illustrated in Figure 3.2. Here they are used in analyzing the real
sensor input data, which is done the same way as the synthetic data was analyzed during the
Optimization stage. Therefore, the Application stage is implemented simply by replicating
a subset of the Optimization stage, as can be seen from comparing the Application stage
to the top row of the Optimization stage in Figure 3.2. Now, the pattern detector is run
on the real sensor input data, using its optimized parameter set. The output consists
of unclassified patterns from which features are extracted for classification. The feature-

28 SynOpSis: Section 3.4, PAMONO: Chapter 4

24 8ynOpSis: Section 3.7, PAMONO: Section 7.3.2
25 8ynOpSis: Section 3.5, PAMONO: Chapter 5

26 SynOpSis: Section 3.6, PAMONO: Chapter 6

2T SynOpSis: Section 3.7.4, PAMONO: Section 7.3.2
28 SynOpSis: Section 3.9.2, PAMONO: Section 7.3.4
29 8ynOpSis: Section 3.8, PAMONO: Section 7.3.3
30 8ynOpSis: Section 3.9.3, PAMONO: Section 7.3.4
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annotated patterns are passed to the pattern classifier, which applies a classifying model3! that
was learned beforehand, given the optimized classifier parameters and using the entire available
ground truth-annotated data for training (the entire available ground truth-annotated data is
constituted by the synthetic training, validation and test set; as the classifying model does not
depend on any of the inputs of the Application stage, it can be learned beforehand to attain
real-time-capability). The classifying model is applied to classify the patterns detected in the
real data, and the classified patterns are output by the Application stage. Estimates of the
quality of this detection and classification result are output during performance estimation.

31 SynOpSis: Section 3.6, PAMONO: Section 7.3.5
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As discussed in Chapter 3, synthesis is a crucial component of SynOpSis. While Section 3.4
abstractly discussed the properties required for a signal model to be used in synthesis, and the
role of synthesis in SynOpSis, this chapter concretely describes how to generate synthetic data
in the context of the PAMONO sensor. After the introduction with a discussion of related
work in Section 4.1, a signal model for PAMONO is proposed in Section 4.2. Application
of this model is discussed in Section 4.3, involving a specialized experimental protocol for
PAMONO measurements in Section 4.3.1, and the computation of synthetic PAMONO
imagery in Section 4.3.2. Conclusions are drawn in Section 4.4. The depictions given in the
entire chapter are a more detailed version of the work in [SLW+14], embedding it into the
context of a more advanced version of SynOpSis than was used in that paper.

4.1 Introduction

Including a Synthesis stage in the SynOpSis approach enables it to benefit from ready
availability of large amounts of ground truth detection and classification results, to be used
as training data in the Optimization stage, as well as for model selection and performance
estimation. Being able to generate large amounts of ground truth fast and with little manual
effort, enables keeping the datasets used in each of these three contexts disjoint, which avoids
overfitting and optimism in the results. Ground truth-annotated synthetic data can be easily
produced without the need for a user to manually segment and classify this large amount
of data: A small set of exemplary patterns suffices to seed synthesis. Details on the data
division strategy for creating multiple disjoint datasets for optimization, model selection and
performance estimation are covered in the experiment description in Section 7.3.4, while
this chapter presents the signal model in general, cf. Section 4.2, along with a procedure for
generating one synthetic dataset, cf. Section 4.3.

As this procedure implements the abstract Synthesis stage from Figure 3.2, its output
accordingly consists of synthetic images, annotated with ground truth pattern locations and
their ground truth classification. For the concrete PAMONO scenario, this Synthesis stage

71
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is resolved in more detail in Figure 4.2, which is explained throughout this chapter. The
PAMONO application is about detecting patterns in the data and classifying them as being
or not being related to nano-objects attaching to the sensor surface. Knowing ground truth
pattern locations and their classification serves to make the objective functions' used in the
Optimization stage? automatically evaluable, allowing to assess the quality of the algorithmic
parameters undergoing optimization. This way, the parameters can automatically adapt to
changing experimental setups of the PAMONO sensor, and an according classifying model
can be learned. Furthermore, generalization performance can be automatically estimated in
the context of model selection and performance estimation?.

The amount of manual segmentation effort required for initializing the Synthesis stage
is considerably smaller than for manually producing a sufficient amount of ground truth-
annotated real data, as required e.g. by [HBR+-08; PKC09; HBR+12]. Han et al. [HBR+08]
require about 500 to 1300 examples per class for training a supervised classifier, while synthesis
in SynOpSis requires only a few* representative target pattern examples. These suffice to
synthesize much larger ground truth-annotated datasets.

Related Work

Physical simulation of the processes interacting with a sensor, along with simulation of
the sensor itself provides a way of creating ground truth-annotated synthetic sensor data.
An example from this category is the work by Majumdar et al. [MMB+05], who use Monte
Carlo (MC) physics simulations to create training data for distinguishing 7-ray-initiated
atmospheric light showers from those caused by hadrons. This involves, amongst others,
simulating both kinds of light showers, light scattering in the atmosphere as the medium, and
simulating the mirrors and photomultiplier electronics of the so-called Major Atmospheric
Gamma Imaging Cherenkov Telescopes (MAGIC), which are the employed sensors.

A physical simulation-based method closer to the PAMONO context is presented in the
work by Wang et al. [WSP+10]: Their field of application is a sensor similar to PAMONO
and as well capable of detecting biological viruses. Synthesis of the sensor signal is carried
out by simulating wave propagation on the sensor surface using the COMSOL Multiphysics
software [COM15]. This simulation provides idealized appearances of the viruses on the
surface, and it does not capture adverse effects like noise, artifacts and background signal.
Hence the simulated data can not be used in optimizing a detector or training a classifying
model for real data.

Real-data-based synthesis is an approach capable of capturing adverse components
corrupting sensor signals. For example Learned-Miller [Lea06] creates generative image
models by firstly transforming a set of input images (e.g. handwritten digits) such as to
remove affine variability between them, and then modeling the latent (wanted) images and
the remaining variability (nuisance variables) separately, which can be used to synthesize new
data for training. Corruptive signal components can not only be captured and generated, but
also analyzed in terms of the nuisance variables that are part of the signal model.

'Detector objectives are listed in Section 3.5.2, classifier objectives are listed in Section 3.6.2.

2The Optimization stage is described in Section 3.7.

3Both are explained in Section 3.9.

“In the evaluation in the context of PAMONO, 20 target patterns were manually segmented for each
synthetic dataset, cf. Section 7.3.4.
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Shotton et al. [SSK+13] utilize computer graphics to render synthetic depth images
mimicking those captured by the Microsoft® Kinect® sensor [Zhal2]. These are used as
training data for human body part labeling in the context of human pose recognition. Real
data enters into this process in terms of motion capture data, aimed at covering the diverse
range of human poses. They report that learning from synthetic training data provides high
accuracy on real test data in their application case. Furthermore, they found that having large
amounts of training data (cheaply available via synthesis) is the decisive factor in attaining
this high accuracy.

The model for the PAMONO sensor as presented now [SLW+14] aims at delivering similar
benefits to PAMONO data analysis. It uses physical modeling only on a high level, describing
image formation on the sensor in terms of signal components and their composition, cf.
Section 4.2. Computation of synthetic imagery is, however, driven by real sensor data,
ensuring that the output data captures even small changes in the physical parameters of the
sensor setup, cf. Section 4.3.

4.2 A Signal Model for the PAMONO Sensor

Image formation on the Charge-Coupled Device (CCD) sensor in PAMONO (cf. Figure 2.2
for the sensor setup) can be modeled by regarding the involved signal components and their
composition. For being a time series of images, PAMONO data is a spatiotemporal signal with
two spatial dimensions x,y and one temporal dimension ¢. It is composed of a background
signal B, the target patterns signal T' caused by nano-objects attaching to the sensor surface,
an artifacts signal A with nuisance structures, and sensor noise IN. Signal composition is
modeled by the following equation [SLW+14]:

I(z,y,t) = B(x,y) - (T-A)(z,y,t) + N(x,y,t). (4.1)

1 is the spatiotemporal intensity signal as recorded by the CCD sensor, cf. Figure 4.1a for an
example. The intensities in I are dominated to a large extent by the background component
B, which remains constant over time and is thus only indexed by (z,y). B is an image of the
gold surface of the sensor, along with interference patterns arising there, both of which do
not change within one measurement.

The desired signal of the measurement is the target patterns signal 7', which is multiplied
with B. The target patterns in T" are due to the nano-object adhesions to the sensor surface
and serve as their indirect proof. Every signal component other than 7" is an impediment to
the analysis process. T' disperses with low amplitudes around 1, i.e. around the neutral element
of multiplication. In lighter areas like those affected by the upward step functions® in the
central part of a nano-object adhesion, 7' is greater than 1. In darker areas like the downward
step functions in the outer part of a nano-object adhesion, T is smaller than 1. Multiplicative
composition of the target patterns signal T with the background B models the proportionality
between the magnitude of the Surface Plasmon Resonance (SPR)-based effects causing 7" and
the local intensity observed in B, cf. Equation (3) in [ZSS+17]. This proportionality means

The role of step functions in PAMONO images as an indirect proof for the adhesion of a nano-object to
the sensor surface was explained in more detail in the context of the physics behind the PAMONO sensor, cf.
Section 2.2.
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(c) Real Artifacts A-30 (d) Synthetic T- A-30

Figure 4.1: Components of the PAMONO Signal Model — Illustration. Examples for the compo-
nents of Equation (4.1) are shown. (a) is a real image I as measured by the PAMONO sensor.
It approximately equals the background component B which dominates the intensities of I.
(b) shows the same real image, after approximate removal of the background B and noise N,
leaving the product of the target patterns component 7' with the artifacts component A. Three
nano-object adhesions in T" are revealed, corrupted by wave-like artifacts in A and residual noise.
For comparison, (c) shows a real image of only the artifacts A and residual noise, without any
target patterns. (d) show the same components as (b), i.e. target patterns, artifacts and residual
noise. The difference is that (b) shows real data, while (d) was created synthetically, using the
signal model from Equation (4.1). Note that the signals in (b)—(d) were amplified by a factor of
30 in comparison to (a), cf. text for more details.

that, with all other things held constant, the SPR effect has lower amplitude for nano-objects
attaching in areas of darker background B, than for those attaching in areas of brighter
background B. Dividing by B to eliminate the multiplicative influence of the background (cf.
Section 5.2) reveals the linear relationship between nano-object diameter and signal intensity,
cf. Figure 4c in [ZKG+10].

The artifacts signal A shares the multiplicative nature of T because it is due to the same
physical effect (SPR). Its intensity range also disperses with low amplitudes around the neutral
element 1 of multiplication. However, the artifacts in A are an undesired nuisance signal,
containing everything impeding nano-object detection. This also includes any departure of the
background signal B from the constancy assumption. Figure 4.1b shows an approximation to
the product T'- A, obtained by applying background elimination (to remove B, cf. Section 5.2)
and denoising (to remove the noise N, cf. Section 5.3) to the real sensor image I from
Figure 4.1a. Doing so reveals three nano-object adhesions as part of T', corrupted by wave-like
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artifacts as part of A, plus residual noise that survived the denoising procedure. Note that
the intensity dominance of B in [ is strong enough to render the T+ A signal from Figure 4.1b
visually imperceptible in Figure 4.1a. Or stated the other way around: The effect of amplitude
change exerted by the T - A factor on the background signal B is considerably smaller than
B itself. Therefore, signal intensities in Figure 4.1b have been amplified by a factor of 30
in comparison to Figure 4.1a, for visualization purposes. The low amplitude of the desired
signal T" is the reason why using a 12-bit CCD is crucial for PAMONO: As the desired signal
resides in the lesser significant bits, a high resolution intensity range is required to avoid
its falling victim to quantization. Figure 4.1c (also amplified by factor 30 in comparison
to Figure 4.1a) shows only the artifacts component A and the residual noise, without any
target patterns. The image was recorded before any nano-objects were inserted into the flow
cell of the sensor. This artifacts signal is the main source of False Positive (FP) detector
responses. Separating T from A on the pixel level is an ill-posed inverse problem because
only an estimate of their product is available for real data. These two facts in conjunction
motivate using the pattern classifier in Chapter 6, which separates T' from A on the pattern
level, by classifying patterns as being caused by either 7' (target) or A (non-target), using
local intensity-, shape- and other statistical features.

The noise component N in Equation (4.1) is modeled additively because it mainly consists
of the additive Gaussian readout noise incurred by the CCD [FMO06]. Besides that, there
is signal-dependent shot noise arising from photon statistics [BB00], which is not modeled
separately because the amount of available light is a controllable physical sensor parameter,
and it is always selected to be large enough to make shot noise negligible, cf. the “Diode
(Light Source)” caption in Section 7.2.1. The nature of the noise is assumed constant over
time because Gaussian readout noise depends on the CCD settings, and shot noise depends
on the available light, both of which are kept constant within one measurement.

Finally, Figure 4.1d (also amplified by factor 30 in comparison to Figure 4.1a) shows
synthetic data, obtained by applying the signal model from Equation (4.1) as according to
the subsequent Section 4.3. Like with Figure 4.1b, the background B and noise N were
suppressed to obtain an approximation of T+ A. This reveals four nano-object adhesions,
along with artifacts similar to those in Figure 4.1b, demonstrating the capability of the model
to mimic real data.

4.3 Applying the Model

The central requirement for synthetic data in SynOpSis is its ability to capture the properties
of real sensor data with regard to two tasks: Firstly, algorithmic parameters that work
well on the synthetic data should also work well on the real data. Secondly, a classifying
model learned from synthetic data should generalize well to real data. One way of obtaining
such synthetic data is to let real data drive the synthesis process, as will be described now.
The components of the signal model from Equation (4.1) are captured as explained in the
experimental protocol in Section 4.3.1 and assembled to form the final synthetic signal, as
described in Section 4.3.2.
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Figure 4.2: Synthesis Stage for PAMONO. A background measurement provides a real signal B- A+ N,
composed of background B, artifacts A and noise N. This measurement is done before any
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archetypal target patterns which are manually segmented by the user. From these, a synthetic
target patterns signal T is generated, for which ground truth is known. T is combined with
the background measurement as according to the signal model from Equation (4.1), and the
synthetic images, along with the ground truth constitute the output of the Synthesis stage.

4.3.1 Experimental Protocol

Computation of the PAMONO signal model from Equation (4.1) builds on four components
to create a synthetic time series of sensor images I. These are determined using real empirical
data. Three of the four components, namely background B, artifacts A and noise N can be
measured in composition, by letting the sensor record a series I7=! of images prior to inserting
the nano-objects sample into the flow cell. This corresponds to a target patterns signal T
that is constantly 1, as indicated by the superscript. The resulting time series of images and
the act of recording it is in the following denoted as the background measurement.
Empirical data for the fourth component, namely the target patterns signal 7', can be
approximated by the following procedure: After the background measurement has been done,
a positive sample of the nano-objects to be detected is injected into the flow cell of the sensor.
The resulting signal and the act of recording it is called the archetypes measurement. It
serves to determine archetypal instances of target patterns that are used in creating a synthetic
target patterns signal T. Determining target pattern archetypes is done interactively: The
user manually segments a small, representative amount of exemplary target patterns, i.e.
nano-object adhesions, in the archetypes measurement, by delineating them with polygons.
To enable this, the background must be eliminated and noise removed, which is done by
applying the averaging background elimination technique from Section 5.2.1 which is briefly
summarized here, stating the concrete parameters that are suitable in segmenting archetypes
for synthesis: An estimate of the time-dependent, low-amplitude T - A components in I
is computed by removing the temporally constant background B and the time-dependent
noise N. This is done by sliding two windows along the temporal axis. Each window is 40
images long, and the windows are 20 images apart. The average of the images in the “earlier”
window is taken as an estimate of the constant background (incorporating earlier temporally
variant information), while the average of the “later” window is taken as an estimate of the
temporally variant T - A component, multiplied with the constant background. The T - A
estimate is extracted by dividing the later average by the earlier one, revealing the changes
that occurred since then. Note that averaging 40 images in both windows eliminates much
of the noise component N, thus the additional denoising techniques from Section 5.3 are
not applied in preparing images for archetype segmentation. To make the T - A estimate
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discernible for the user, it is amplified by a user-selectable factor, making the result look e.g.
like Figure 4.1b. In this type of data, the user manually segments a small and representative
amount of archetypal target patterns. This manual segmentation spatially separates 1" from
the artifacts A, and the obtained target pattern archetypes are used in creating a synthetic
target patterns signal T. In order to do so, the representation of an archetype consists
not only of the polygon segmented by the user, but also of the local intensities in the T'- A
estimate, that are observed in and around that polygon. These intensities do not undergo any
amplification because they are utilized in synthesizing T, as described in the next section.

Note that unlike the target patterns signal T', the artifacts signal A can not be captured
adequately by archetypes due to its very diverse nature: Any structure in the data that is
not a target pattern may be regarded as an artifact. Therefore it is more efficient to identify
artifacts as “not being a target pattern”, by comparing ground truth target patterns to
detector results as described in Section 5.8. This also saves the need for manual segmentation
of artifacts.

Summarizing the procedures above and embedding them into the SynOpSis workflow
from Figure 3.2, the experimental protocol for conducting a run of multiple PAMONO
measurements with a new sensor setup is as follows:

1. A background measurement is conducted by running the sensor before any nano-objects
have been inserted into the flow cell. This yields I7=' = B- A+ N, i.e. real background,
artifacts and noise. The target pattern component 7T is neutral, i.e. constantly 1. The
background measurement occupies the top row in Figure 4.2.

2. An archetypes measurement is recorded after a first positive sample with the nano-
objects to be detected has been inserted into the flow cell of the sensor. Background
elimination yields an estimate of T - A, like in Figure 4.1b, and the user manually
segments archetypal target patterns. This process occupies the left side of the bottom
row in Figure 4.2.

3. Synthesis assembles the background measurement with the archetypal target patterns
via the signal model from Equation (4.1) and outputs synthetic images, along with
ground truth pattern locations and classification, which is described in detail in the
following Section 4.3.2 and schematically visualized in the remainder of Figure 4.2.

4. The Optimization stage and the rest of the offline part of SynOpSis are carried out, cf.
top part of Figure 3.2.

5. Utilizing the algorithmic parameters and the classifying model determined in the offline
part, the PAMONO measurement runs of interest are conducted. The measured data
is analyzed in real-time via the Application stage in the bottom part of Figure 3.2, as
described in Section 3.10. This can be done until experimental conditions change again,
after which a new run of this protocol might be required in order to ensure optimized
quality of analysis results.

4.3.2 Computation

After the background and archetypes measurement and the manual segmentation of archetypal
target patterns (steps 1 and 2 of the experimental protocol in the previous section) have been
conducted, all data required for computing synthesis is available. The pivotal point for this
computation is the signal model from Equation (4.1). Before applying it, a synthetic target
patterns signal 7 with known ground truth must be generated, which is done as follows:
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Uniformly random draws with replacement from the set of manually segmented archetypes
are conducted, and each such archetype is placed at a uniformly random spatiotemporal
location in the domain (z,y,t) of the background measurement 171
the desired density of target patterns has been reached. Placing an archetype at position
(e, Yo, te) in the domain of I7=! means that the centroid of its manually segmented polygon
is placed at coordinate (zc, ye,t.) in a volume of ones, the size of I7=!. Then the intensities of
the archetype, which disperse with low amplitudes around 1, are multiplied with that volume,
at their respective locations around (¢, yc,tc). This is repeated for all subsequent images

. This is done until

in the volume, i.e. for all ¢ > t. because once a nano-object attaches to the sensor surface,
it remains fixated there, and its appearance does not change. In multiplying the intensities
with the volume, a feathering-like weighting [Sze06] is applied to fade out intensities outside
the segmented polygon, while its insides are kept as they are. Then the next archetype is
multiplied with the same volume, until it is filled with target patterns at the desired density.
The resulting volume is the synthetic target patterns signal T', for which ground truth is known
in terms of the manually segmented polygons at their randomly drawn positions. 7" is then
IT=1, corrupting target patterns originating
from the same archetype with different background, artifacts and noise, thus increasing

multiplied with the background measurement

variation. This composition yields the synthetic image sequence T with nano-objects at known

I7=! contains none. The entire process described

locations and no other nano-objects because
here occupies the right part of the scheme in Figure 4.2.
Note that multiplying I7=! with 7 means multiplying 7" with the two summands consti-

IT=1 as according to Equation (4.1). In the first summand, T assumes the role of

tuting
the target patterns signal T in full agreement with the equation: T is multiplied with the
undesired artifacts component A and with the temporally constant background signal B.
However, the noise summand N will also be multiplied with 7', hence violating the model.
This is ignored because it is negligible for two reasons: firstly because T disperses around 1
with very low amplitudes and secondly because of the noise nature of N.

The result of this real-data-driven approximation to Equation (4.1) is a synthetic dataset
containing real background, artifacts and noise, along with archetypal synthetic target patterns
that are created from real data. It captures the appearance of fully real data, as can be seen
from comparing the real T - A estimate in Figure 4.1b to the synthetic one in Figure 4.1d.
Incorporating a real artifacts signal renders the manual segmentation of archetypal artifacts
unnecessary because all detections that do not match a synthetic target pattern can be
considered as belonging to the non-target class caused by artifacts or noise. The synthetic
image sequence I, along with the ground truth target pattern locations and implicit two-class
classification are utilized by the remainder of SynOpSis.

4.4 Conclusion

A signal model for the PAMONQO sensor was presented and computed using empirical data from
a specialized experimental protocol. Applying this signal model forwardly generates synthetic
PAMONO imagery, annotated with ground truth, which can be used to automatically evaluate
objective functions within SynOpSis. Applying the signal model backwardly, in this case by
making efforts to extract the signal of interest 7" from the observed composite signal I, provides
guidance for designing further processing steps. Specialized methods can be targeted at
handling the different components of I modeled in Equation (4.1): The background component
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B is targeted within the pattern detector, by the background elimination techniques discussed
in Section 5.2. The noise component N is addressed by the denoising strategy presented in
Section 5.3, which is as well part of the detector. The separation of the target patterns in T'
from the artifacts in A occurs on the pattern level and is the task of the pattern classifier
covered in Chapter 6.

Evaluation of the Synthesis stage for PAMONQO is conducted by measuring how well the
algorithmic parameters and classifying model determined from synthetic data generalize to
the real data to be analyzed. As a consequence, this evaluation relies on the full SynOpSis
approach, including the pattern detector and classifier. It is thus given in the overall evaluation
of SynOpSis in Chapter 7, after the pattern detector and classifier have been presented. The
cross-validation strategy in which SynOpSis is run also encompasses the Synthesis stage.
Details on how synthesis is applied within cross-validation can be found in Section 7.3.4,
describing the experimental settings relating to cross-validation.
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As depicted in Figure 3.1, the task of finding nano-objects in a given time series of
PAMONO sensor images is divided into a detection and a classification part. The pattern
detector to be presented in this chapter is a concrete realization of the abstract pattern detector
displayed in Figure 3.3. It has been developed specifically for the PAMONO application
scenario and exhibits the same interface in terms of input and output as the abstract pattern
detector. Therefore it can implement the two instances of the pattern detector in the SynOpSis
overview, depicted in Figure 3.2.

This PAMONO pattern detector is real-time-capable and runs on the Graphics Processing
Unit (GPU). As discussed in the context of the abstract pattern detector in Section 3.5, one
of the goals of detection is not missing any target patterns in the data, i.e. not missing any
nano-objects attaching to the sensor surface in the context of PAMONQ. This goal is pursued
by using Recall as one objective in optimizing detector parameters. Doing so comes at the
possible cost of incurring many spurious detector responses, i.e. detections of non-target
patterns. These are sorted out later, by the pattern classifier to be presented in Chapter 6.
Hence the patterns output by the detector are to be regarded as candidates for being caused
by actual nano-objects attaching to the sensor surface.

The central challenges arising in finding all such candidates are due to the adverse
properties of the time series of input images provided by the PAMONO sensor (cf. Section 4.2):
The low amplitude desired signal caused by the target patterns is modulated upon an
artifacts signal of similar amplitude and a background signal of considerably larger amplitude.
Additionally, there is the inevitable noise of recording. These challenges are addressed by
specific modules, which in total constitute the pattern detector.

After Section 5.1 provided an overview of these modules and of the pattern detector as a
whole, each module is presented in detail in Sections 5.2 to 5.6. Section 5.7 summarizes all
algorithmic parameters configuring the modules. These parameters are optimized within the
Optimization stage of SynOpSis with respect to the objectives listed in Section 3.5.2. In order
to do so, Section 5.8 describes a procedure enabling to evaluate the objective functions for
given parameter sets in an automatic fashion. This is done by matching synthetic ground
truth to detector results. Finally, Section 5.9 concludes the chapter and leads over to the
pattern classifier in Chapter 6.

5.1 Introduction

This section gives an overview of the pattern detector to be presented in the following sections.
In a basic version, this detector was described in [SWL+11] and [LST+13a], and it has
been heavily extended since then. Its extended version will be described in detail here,
including references to further publications as they are used. The detector is realized as a
real-time-capable streaming pipeline on the GPU. A schematic depiction of this pipeline
is given in Figure 5.1. The input stream consists of a time series of PAMONQO images,
obtained either by synthesis (detector in Optimization stage in Figure 3.2) or from the sensor
(detector in Application stage in Figure 3.2). Its output are patterns represented as polygons,
delineating areas in the images that are candidates for being affected by nano-object adhesions.
Furthermore, a processed variant of the time series of input images is part of the output. From
these enhanced images, intensity-based local features are extracted that serve in classifying
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Figure 5.1: Pattern Detector for PAMONO. A concrete version of the abstract pattern detector from
Figure 3.3 is shown that has been specifically designed for PAMONO data analysis. It takes
real/synthetic images as its input, along with a parameter set configuring the algorithms in the
parametric pipeline constituting the detector. Background elimination and denoising remove the
constant background B and the noise N from the input signal, resulting in the product T'- A of
target patterns T' and artifacts signals A. Time series classification identifies salient coordinates
in T - A, which are aggregated to polygons within segmentation. These polygons are the output
patterns and are candidates for delineating areas affected by a nano-object adhesion. Furthermore
the T - A signal is part of the output as it serves as the basis for extracting intensity-based local
features from the areas covered by the polygons, cf. Section 6.2. These features are used in a
subsequent classification step to sort out False Positive (FP) detector responses, cf. Chapter 6.

the output polygons as being related either to target patterns (nano-objects) or to non-target
patterns (artifacts), cf. Section 6.2.

In the following depiction of the four modules of the pattern detector in Figure 5.1, the
input time series of images is denoted as I. This I is a placeholder for both, synthetic
and real input, which also holds for the signal components of which I consists, as modeled
by Equation (4.1). For convenience and due to their frequent use in this chapter, these
components are briefly summarized here: A PAMONQO measurement [ is composed as
I=B-T-A+ N, consisting of

B, the background component modeled as being constant over time, exhibiting intensities
that dominate all other components,

T, the low amplitude target patterns signal that is caused by nano-objects attaching to
the sensor surface,

A, the artifacts component with an amplitude similar to 7" but containing only signals that
are due to non-target patterns or deviations of B from the constancy assumption, and

N, the noise incurred by the sensor.

Hence, the indirect proof for the nano-objects to be detected resides in the 7" component,
while all other components adversely affect the analysis process.

The pattern detector in Figure 5.1 receives a raw PAMONQO measurement I as its input,
along with a set of algorithmic parameters, configuring its four processing modules. These
modules and their tasks in PAMONO data analysis are as follows:

1. Background elimination tackles the high amplitudes of the background component
B by dividing them out, respecting the signal model from Equation (4.1). Furthermore,
it serves to separate spatially overlapping target patterns in the temporal domain.
Details on background elimination are provided in Section 5.2.
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2. Denoising alleviates the noise component N and thus extracts an estimate of the T- A
component. Details on denoising are provided in Section 5.3.

3. Time series classification classifies the time series observed in the T - A estimate
as being salient or not. Non-salient time series contain only residual noise, while
salient time series exhibit signals that are due to the T or the A component. No
decision is made, however, which of the two components is responsible for saliency. Two
alternative approaches to this time series classification are presented in Sections 5.4
and 5.5, respectively.

4. Segmentation aggregates the saliency class mask output by time series classification
to polygons, residing in the same spatiotemporal coordinate system as the input
measurement I. These polygons indicate where and when time series were salient,
thus delineating areas that are candidates for being affected by a nano-object adhesion.
Details on segmentation are provided in Section 5.6.

Each section presenting a detector module is closed by a subsection, listing and describing the
parameters arising in that module. For an overview, Section 5.7 lists all parameters of the
pattern detector. Evaluations of the proposed methods and their interplay are given in the
overall validation of SynOpSis in Chapter 7. However, the choice between the two alternatives
for time series classification is fixed in advance within this chapter. The corresponding
evaluation is given in Sections 5.5.4 and 5.5.5.

The overall goal of the pattern detector can be summarized as marking areas that are
candidates for being affected by a nano-object adhesion with polygons. Candidacy information
is obtained by analyzing an estimate of the T'- A component of the signal model. The artifacts
component A and possible estimation errors in this 7'- A estimate demote the output polygons
to be merely candidates. The target signal component T is not separated from A on the pixel
level because the diverse nature of the artifacts impedes their modeling on the pixel level.
Instead, the T - A estimate as computed by the denoising module is a part of the detector
output, as indicated by the bottommost connection in Figure 5.1. Along with the polygons,
it is processed further by the methods in Chapter 6: Local features are extracted from 7'- A
within the areas covered by the detected polygons, cf. Section 6.2. These features measure
properties of the underlying intensities. They are used in classifying the polygons either as
actual nano-objects (True Positive (TP) detector responses due to the T' component) or as
spurious detections (False Positive (FP) detector responses due to the A component). This
means T - A is separated on the polygon level, instead of separating it on the pixel level.

5.2 Background Elimination

Background elimination serves to remove the temporally constant, high-intensity background
component B(z,y) from the PAMONO sensor images I(x,y,t) it receives as its input, cf.
Figure 5.1. Its second input are the background elimination parameters that are explained
throughout this section. Background elimination works on a per-image basis: For each
2-D image I(o,0,t), a corresponding output image is computed, i.e. the input time series
of PAMONOQO images is transformed into a new time series of images with the background
B(z,y) removed. Looking at the signal model I(x,y,t) = B(xz,y) - (T-A)(z,y,t) + N(z,y,t)
from Equation (4.1), removing B(z,y) means that the output of background elimination
is a time series of images (T - A)(o,0,t) + N(o,0,t), containing the product of the target
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patterns signal T" with the artifacts signal A and additive noise N. The large multiplicative
influence exerted by the high intensities in B are removed, thus making spatially neighboring
intensities in the resulting T - A + N signal comparable.

While partly drawing from techniques applied in fluorescence microscopy (cf. Chapter
12 of [WMC10]), the background elimination approach presented here has been developed
specifically for PAMONO data, exploiting its spatiotemporal structure on the basis of the
signal model from Equation (4.1). Besides the main goal of removing the B component,
background elimination furthermore serves to increase data quality because it is realized via
methods incorporating temporal denoising. These methods are applied in a sliding window
fashion along the temporal axis, which firstly makes background elimination streaming-capable,
and secondly facilitates analysis because past nano-objects become part of the eliminated
background over time. Therefore, nano-objects that overlap spatially, can be separated in
the temporal domain, if they appear at moments in time that are further apart than the
temporal resolution provided by the sliding window background elimination kernel.

Besides the temporally constant background component B(z,y) from the signal model in
Equation (4.1), two new terms, the ‘past’ and the ‘present’ signals, are required to denote
the temporally variant components in background elimination. Both are prerequisites of the
following sections and are therefore defined now:

Definition 5.1. Let t. be the temporal index of the image I(x,y,t.) to be currently processed
by background elimination, within a stream I of PAMONO images as defined by the signal
model in Equation (4.1). Then the past p(x,y,t.) at time t. denotes the temporally constant,
high-intensity background component B(x,y) and any temporally variant signals in any other
component that happened before t.. This includes the nano-objects in the target patterns
component T, as well as artifacts A. Conversely, the term present ¢(x,y,t.) at time t.
denotes B(x,y) along with any temporally variant signals in any other component that happen
at time t..

Due to the temporal constancy of B(x,y), both, the past p and present ¢ contain the
same B. Background elimination serves to remove this constant B and the temporally variant
signal components that occurred before t.. More exactly: For time t., background elimination
removes the past p(z,y,t.) from the present ¢(x,y,t.). As an example, a nano-object that
attaches to the sensor surface at time t, < t. causes a step function at time t,, and the
step plateau remains constant from then on because the nano-object remains attached, cf.
Figure 2.2. As t, < t., the step function is part of the past p(x,y,t.) at time t. and will
hence be removed by background elimination, facilitating the detection of new nano-objects
attaching later around the same spatial coordinates.

Therefore, background elimination removes the high intensities of B that occur in both,
past and present signal and furthermore extracts exactly those temporally variant signals
that change at time t., i.e. between p and ¢. Section 5.2.1 presents a linear approach for
estimating p and ¢ and subsequently provides a technique for background elimination that
exploits the signal model from Equation (4.1). The same technique can be applied to the
rank order-based nonlinear estimation of p and ¢ that is presented in Section 5.2.2.

5.2.1 Averaging Background Elimination

Background elimination operates on a per-image level, i.e. for each input image I(o,0,t.), a
past image p(o,o0,t.) and a present image ¢(o,o0,t.) are estimated, from which the resulting
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estimate of (T A)(o,0,t.) + N(o,0,t.) is computed. With this per-image nature clarified,
the index wildcards o are in the following replaced again with the actual indices x,y. Looking
at Definition 5.1, a simple idea for estimating the past signal p(z,y,t.) at time ¢, is to
compute a temporal aggregate over all sensor images I(z,y,t) with t < t.. This aggregate
can e.g. be obtained by averaging all preceding images over the temporal dimension. Doing
so, the resulting p(z,y,t.) fulfills Definition 5.1 because it contains the temporally constant
B(z,y) and anything temporally variant that happened before t.. However, averaging over all
past images means that transient fluctuations influence p(z,y,t.). Their influence becomes
the larger, the longer their duration. To counteract this effect, only the preceding image
I(z,y,t.—1) could be used as p(x,y,t.). This in turn is corrupted by more noise N, which was
previously alleviated by averaging over a possibly large number of images. The compromise
between these extremes that was chosen for PAMONO is to average over a window of the
most recent w” € N, images preceding t.:

1 te—1 .
p(ﬂﬂ,y,tc) = E Z I(fL’,y,’L). (51)

1=tc.—wP
The parameter w” trades off a better Signal-to-Noise Ratio (SNR) against temporal resolution
(because it smoothes the input signal along the temporal dimension) and is subject to
optimization.

The simplest way of obtaining an estimate of the present signal ¢(z,y,t.) is to use the
raw sensor image I(x,y,t.) recorded at time t.. It readily fulfills Definition 5.1 because it
contains the temporally constant B(z,y) and anything temporally variant that happens at
time t.. However, for the same SNR versus temporal resolution trade-off discussed in the
context of the past signal, it is beneficial to conduct a windowed estimation of ¢(x,y,t.) and
to leave the window size w® € Nyg as a parameter for optimization. Therefore, analogously to
Equation (5.1), the present at time t. is estimated as

tc+w¢’71

Syt = 3 1w pi), 52)
1=t

The parameter w? introduces latency proportional to its value into real-time analysis: Ob-
taining the background elimination result for time ¢, requires the subsequent w? — 1 sensor
images to be already available. Note that the windowed average estimations of p and ¢ can
be regarded as a simple kind of temporal denoising/smoothing with a kernel size defined by
w” and w?.

Given past and present estimates p(x,y,t.) and ¢(x,y,t.) for time t., the background
elimination result at t. is computed as

o(x,y,tc)

p(w,y,tc) ~ (TA)(xvy7tc) +N(:C>y7tc)' (53)

This approximation can be inferred from the signal model in Equation (4.1) as follows: Both,
p and ¢ are temporal aggregates of PAMONO sensor images [ = B-T- A+ N. For the
first part of the argument, the noise summand N is temporarily ignored, making I purely
multiplicative. The B component is temporally constant and thus identical in both p and
¢. Therefore it is canceled out by the division in Equation (5.3), removing the irrelevant
high intensities. The remaining 7 - A components are temporally variant: Only those values
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that are identical in past and present cancel out. Any values that changed between past
and present do not cancel out, yielding a T - A estimate containing only those events that
happen at present, as desired. Realizing background elimination as a division accommodates
the multiplicative nature of the B -T - A components of the signal formation modeled in
Equation (4.1). However, for the noise term N, which has up to now been ignored, the model
is violated. Like in synthesis, as described in Section 4.3.2, this is negligible: First of all, the
intensities in N are small compared to those in B and are furthermore decreased due to the
fact that the windowed average estimations of p and ¢ realize a simple temporal denoising. A
second argument follows from assuming the availability of noise-free p and ¢ to which noise
terms N” and N? are added, respectively. Performing background elimination in accordance
with Equation (5.3) yields

p+N® ¢ . N?
p+NP  p+NP  p+ NP

The N term in the numerator of the right summand is divided by p+ N”, which is dominated
by the B in p and thus much larger than N?. The N” term in the denominator of the left
summand is added to p. As p involves the much larger B, the corruption exerted by N on
the denominator is negligible. The error incurred by ignoring N” and N® in background
elimination is again regarded as (different) noise. This is the N on the right hand side of the
approximation in Equation (5.3).

Background elimination is applied to PAMONO sensor data in a sliding window fashion:
As soon as the first w” + w® images have been recorded, Equations (5.1) to (5.3) can be
evaluated for the first time. Every further recorded sensor image results in a new image
being output by background elimination, as t. is increased by one and the past and present
estimation windows defined by w” and w? are slid forward by one. This sliding window
approach is well-suited for the streaming scenario that arises in PAMONQ data analysis.

Furthermore, it introduces a mechanism for “forgetting” past events: Once a nano-object
adhesion falls into the past window, it starts to fade and is completely “forgotten” from the
moment at which the 