
A Parameter-Optimizing Model-Based Approach to the
Analysis of Low-SNR Image Sequences for Biological Virus

Detection

Dissertation

zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Dominic Siedhoff

Dortmund

2016

Tag der mündlichen Prüfung: 15. September 2016
Dekan /Dekanin: Prof. Dr.-Ing. Gernot A. Fink
Gutachter /Gutachterinnen: Prof. Dr. Heinrich Müller

Prof. Dr.-Ing. Dorit Merhof

Acknowledgments

I would like to thank everybody who supported me during the research that led to this
thesis. In particular, I would like to thank my supervisor, Prof. Dr. Heinrich Müller, for his
advice and guidance, fruitful discussions, sharing his experience and letting me develop my
own. Furthermore, I would like to thank Prof. Dr.-Ing. Dorit Merhof from RWTH Aachen
University for kindly agreeing to review my thesis and for improving it with helpful remarks.

In addition to that, I want to thank everybody in the team of project B2 of the collaborative
research center SFB 876. I am proud I could be a part of you and grateful for the opportunity
to work with you. Besides my direct team mates, I want to thank everybody within SFB 876
with whom I had the opportunity to collaborate over the years. I want to thank all my
co-authors, my colleagues across different chairs and departments at TU Dortmund University,
as well as my family and friends.

I will not list the names of all of you here. Instead, I simply enjoy the thought that many
of you felt addressed more than once while reading this. Thank you all for your friendship
and support, for discussions and ideas, and for constant inspiration!

A Parameter-Optimizing Model-Based Approach to the Analysis of
Low-SNR Image Sequences for Biological Virus Detection

Abstract:
This thesis presents the multi-objective parameter optimization of a novel image analysis
process. The focus of application is automatic detection of nano-objects, for example biological
viruses, in real-time. Nano-objects are detected by analyzing time series of images recorded
with the PAMONO biosensor, after parameters have been optimized on synthetic data created
by a signal model for PAMONO.

PAMONO, which is short for Plasmon-Assisted Microscopy of Nano-Sized Objects, is
a biosensor yielding indirect proofs for objects on the nanometer-scale by measuring the
Surface Plasmon Resonance (SPR) effects they cause on the micrometer scale. It is an optical
microscopy technique enabling the detection of biological viruses and other nano-objects
within a portable device. The PAMONO biosensor produces time series of 2-D images on the
order of 4000 half-megapixel images per experiment. A particular challenge for automatic
analysis of this data emerges from its low Signal-to-Noise Ratio (SNR). Manual analysis takes
approximately two days per experiment and analyzing person.

With the automatic analysis process developed in this thesis, occurrences of nano-objects
in PAMONO data can be counted and displayed in real-time while measurements are being
taken. Analysis is divided into a GPU-based detector aiming at high sensitivity, complemented
with a machine learning-based classifier aiming at high precision. The analysis process is
embedded into a multi-objective optimization approach that automatically adapts algorithm
choice and parameters to changes in physical sensor parameters. Such changes occur, for
example, during sensor prototype development.

In order to automatically evaluate the objectives undergoing optimization, a signal model
for the PAMONO sensor is proposed, which serves to synthesize ground truth-annotated data.
The parameters of the analysis process are optimized on this synthetic data, and the classifier
is learned from it. Hence, the signal model must accurately mimic the data recorded by the
sensor, which is achieved by incorporating real sensor data into synthesis.

Both, optimized parameters and the learned classifier, achieve high quality results on the
real sensor data to be analyzed: Nano-objects with diameters down to 100 nm are detected
reliably in PAMONO data. Note that the median SNR over all nano-objects to be detected
was below two in the examined experiments with 100 nm objects.

While the presented analysis process can be used for real-time virus detection in PAMONO
data, the optimization approach can serve in accelerating the advancement of the sensor
prototype towards a final setup of its physical parameters: In this scenario, frequent changes in
physical sensor parameters make the automatic adaptation of algorithmic process parameters
a desirable goal. No expertise concerning the underlying algorithms is required in these use
cases, enabling ready applicability in a lab scenario.
Keywords:
Parameter Optimization, Automated Microscopy, Low SNR, Data Analysis, Image Processing,
Time Series Analysis, Nano-object Detection, Biological Virus Detection, Biosensor

Contents

1 Introduction 1
1.1 Motivation and Relevance . 2
1.2 Contributions of this Work . 5
1.3 Organization of the Thesis . 7
1.4 Acknowledgment . 8

2 Biological Virus Detection with the PAMONO Sensor 9
2.1 PAMONO Capabilities and Applications . 9
2.2 The Physics Behind the PAMONO Sensor . 12
2.3 PAMONO Data and Analysis Task . 13

3 The SynOpSis Approach 17
3.1 Abstract Task Description . 18
3.2 SynOpSis Overview . 19
3.3 Related Work . 22
3.4 Synthesis Stage . 33

3.4.1 Signal Model . 33
3.4.2 Synthetic Ground Truth Patterns and Classification 34

3.5 Pattern Detector . 34
3.5.1 Input and Output . 35
3.5.2 Objectives . 35

3.6 Pattern Classifier . 40
3.6.1 Input and Output . 41
3.6.2 Objectives . 43

3.7 Optimization Stage . 46
3.7.1 Related Work . 47
3.7.2 Algorithm Choice for Optimizing PAMONO Data Analysis 48
3.7.3 Genetic Algorithms . 50
3.7.4 Multi-Objective Genetic Algorithms 54
3.7.5 Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 56
3.7.6 Global versus Sequential Optimization of SynOpSis 58

3.8 Desirability Functions for Formalizing Expert Preferences 59
3.8.1 Harrington Desirability Functions . 60
3.8.2 Desirability Indices . 61
3.8.3 Desirability in SynOpSis . 62

3.9 Model Selection and Performance Estimation 63
3.9.1 Generalization Performance . 64
3.9.2 Model Selection . 65
3.9.3 Performance Estimation . 67

3.10 Summary of SynOpSis and Application Stage 68

vii

viii Contents

4 Synthesis Stage for PAMONO 71
4.1 Introduction . 71
4.2 A Signal Model for the PAMONO Sensor . 73
4.3 Applying the Model . 75

4.3.1 Experimental Protocol . 76
4.3.2 Computation . 77

4.4 Conclusion . 78

5 Pattern Detector for PAMONO 81
5.1 Introduction . 82
5.2 Background Elimination . 84

5.2.1 Averaging Background Elimination . 85
5.2.2 Median Background Elimination . 88
5.2.3 Step Responses of Background Elimination Techniques 88
5.2.4 Parameters . 90

5.3 Denoising . 90
5.3.1 Spatial Denoising Techniques . 92
5.3.2 Fuzzy Spatiotemporal Denoising . 95
5.3.3 Application-Specific Cleaning Heuristics 98
5.3.4 Parameters . 99

5.4 Time Series Classification via Fuzzy Template Matching 100
5.4.1 Time Series Preselection . 101
5.4.2 Matching Score . 102
5.4.3 Fuzzy Time Series Classification . 104
5.4.4 Parameters . 106

5.5 Time Series Classification via Translation-Invariant (TI) Wavelet Features 107
5.5.1 Translation-Invariant Feature Extraction 110
5.5.2 Feature Ranking and Selection . 112
5.5.3 Condensed k-NN Using Fast Coreset Clustering 113
5.5.4 Performance . 115
5.5.5 Comparison to Fuzzy Template Matching 123
5.5.6 Conclusion . 125

5.6 Segmentation . 127
5.6.1 Preprocessing on the Pixel-Level . 128
5.6.2 Aggregating Pixels to Polygons . 129
5.6.3 Postprocessing on the Polygon-Level 131
5.6.4 Parameters . 132

5.7 Parameters of the Detector . 133
5.8 Matching and Labeling . 135
5.9 Conclusion . 138

6 Pattern Classifier for PAMONO 141
6.1 Introduction . 142
6.2 Feature Extraction . 145

6.2.1 Features of Polygon Shape . 145
6.2.2 Features of Spatial Intensities . 148

Contents ix

6.2.3 Features of Spatiotemporal Intensities 150
6.3 Balancing Class Prevalence . 152

6.3.1 Synthetic Minority Over-Sampling Technique (SMOTE) 154
6.3.2 Adaptive Synthetic Sampling (ADASYN) 155
6.3.3 Balancing in SynOpSis . 156

6.4 Feature Scale Normalization . 157
6.4.1 Methods for Affine Feature Scale Normalization 157
6.4.2 Applying Feature Scale Normalization 158

6.5 Feature Selection . 159
6.5.1 Approaches to Feature Selection . 159
6.5.2 Feature Selection in SynOpSis . 161

6.6 Learning Algorithms . 162
6.6.1 k-Nearest Neighbors Algorithm (k-NN) 162
6.6.2 Support Vector Machine (SVM) . 163
6.6.3 Random Forest . 165
6.6.4 Naïve Bayes . 167

6.7 Results . 168
6.7.1 Learning Algorithms . 170
6.7.2 Balancing Class Prevalence . 175
6.7.3 Feature Selection . 178
6.7.4 Feature Extraction . 179

6.8 Remaining Parameters of the Classifier . 181
6.9 Conclusion . 182

7 Evaluation of SynOpSis for PAMONO 183
7.1 Introduction . 184
7.2 PAMONO Experiments . 184

7.2.1 PAMONO Sensor Setup and Variations 185
7.2.2 Description of PAMONO Experiments 186
7.2.3 Signal-to-Noise Ratios . 187

7.3 Setup of SynOpSis for PAMONO . 190
7.3.1 Objectives and Reported Measures . 191
7.3.2 Genetic Algorithm Settings . 193
7.3.3 Desirability Settings . 195
7.3.4 Model Selection and Performance Estimation Strategies 197
7.3.5 Computing Classifying Models . 199
7.3.6 Measurement System . 200

7.4 Illustrated Results of a Single Optimization and Analysis 200
7.5 Optimization Options and Final Analysis Results 204

7.5.1 Results Over Datasets . 206
7.5.2 Results Over Optimization Modes . 207
7.5.3 Results Over Desirability Modes . 209
7.5.4 Choice of Optimization and Desirability Mode 210
7.5.5 Final Analysis Results Over Experiments 212
7.5.6 Quality of Performance Estimates . 217
7.5.7 Specificity of Final Analysis Results 219

x Contents

7.5.8 Computation Time . 220
7.6 Parameter Choices of the Optimization Stage 223

7.6.1 Examining Pareto Fronts in Parameter Space 223
7.6.2 Modeling Parameter Set Quality in Objective Space 229

7.7 Cross-Experiment Generalization Performance 233

8 Conclusion and Future Work 241
8.1 Conclusion . 241
8.2 Future Work . 243

A Performance Measures and Equivalences 251

B Comparison of Wavelet Bases 255

C Publications and Author’s Contributions 257

Acronyms 261

Mathematical Symbols 265

Bibliography 269

Chapter 1

Introduction

Contents
1.1 Motivation and Relevance . 2

1.2 Contributions of this Work . 5

1.3 Organization of the Thesis . 7

1.4 Acknowledgment . 8

Automation of quantitative microscopy, e.g. counting certain objects of interest in micro-
scopic images, received increasing attention in the last decades. The reason is that the scale
of experiments and hence the number of objects to be detected became larger and larger,
thus rendering manual evaluation a severe bottleneck. Numerous approaches to alleviate this
bottleneck have been proposed, exploiting the increasing image processing power of modern
computers to (semi-)automate the time-consuming object detection tasks that otherwise would
have to be performed manually. Typically, the development of modality-specific algorithms
for automatic analysis takes place after the development of the microscopy technique itself
has already been completed. Hence these algorithms focus on established imaging techniques
that have been fully evolved. Variations in the physical-world parameters of the microscopy
device are small, and the kind of data to be analyzed can be regarded as virtually ‘the same’
every time.

However, also the developmental phase of a novel microscopy technique can largely benefit
from early availability of an automatic data analysis process: Developing a new type of
microscopy device can be regarded as an experiment with many physical parameters that can
be varied. The impact of modifying these physical parameters must be evaluated, in order
to identify the most suitable setup of the device for a given purpose. This requires a large
number of measurements to be conducted. Being able to automatically analyze the outcomes
of these measurements accelerates prototype development because the time otherwise taken
for manual examination of possibly large amounts of data is saved. This calls for highly
adaptive analysis methods, capable of automatically adapting to changes in the physical
parameters of the prototype device. Given such methods, high quality analysis results can be
achieved, which is mandatory for attributing any deterioration in results quality to a poor
setup of physical device parameters, as opposed to unsuitable processing. Availability of
an automatic analysis process is not only beneficial for accelerating prototype development
during the experimental phase of a microscopy device but is also of high practical value in
everyday lab practice, once the development has been completed.

1

2 Chapter 1. Introduction

1.1 Motivation and Relevance

The PAMONO biosensor [ZKG+10], which is the focus of application in this thesis, is a novel
microscopy technique in development. This prototype development can largely benefit from
adaptive methods as described above. Such methods will be developed within this thesis,
exemplified with respect to the PAMONO biosensor. First of all, to illustrate the relevance of
PAMONO, a short summary of its applications and capabilities will be given now.

The PAMONO biosensor addresses the increasing need for rapid detection of nano-objects,
in particular of biological viruses [EMY+08; MRE09]. Methods for rapid detection of newly
emerging viruses accelerate clinical diagnoses, aid in reducing the costs for health care, and
most importantly combat epidemic spread of viruses [MRE09]. PAMONO is a real-time-
capable method for indirect, optical detection of nano-objects, e.g. intact biological viruses,
in liquid samples. Its capability for virus detection is based on virus-antibody-interactions,
thus it can furthermore be used in testing the capability of newly developed antibodies to
bind their targets, which is applicable in pharmaceutical research.

PAMONO fulfills most of the desiderata for next generation biosensors as identified in
[EMY+08] and [MRE09]: It is sensitive to low concentrations of the target nano-objects
[STM+15] and easy-to-operate. By using only commercial off-the-shelf optical components it
is inexpensive. It can be realized as a portable device, enabling Point of Care (POC) usage, e.g.
in remote locations or at the home of patients. Portability furthermore enables deployment
of a network of cooperating biosensor units, which allows monitoring virus prevalence over
large geographic scales [LKD+14]. Finally, PAMONO virus detection is fast: The attachment
of viruses to the sensor surface can be visualized and automatically detected in real-time,
provided that suitable data processing is applied. The algorithmic methods to be developed
throughout this thesis meet up with this real-time capability, i.e. they enable analysis and
visualization of PAMONO sensor data in real-time, while measurements are being taken.

Broader Context

When regarded in a broader context, asking for an automatic method for PAMONO data
analysis means asking for a new, modality-specific method for automated microscopy. With
regard to other, already established microscopy modalities, such specific methods exist,
e.g. [HBR+08; HBR+12; PKC09; YBC+10; ALN+12; WHS+12; TRS+02; Oli02; ZFS+07;
SLN+09; JZK+07; MSB+13]. A frequent characteristic of the tasks solved by these methods is
the requirement for detecting low-intensity objects of interest in noisy data. This characteristic
is shared by PAMONO data analysis and is also encountered on very different scales, e.g. in
astroparticle physics for astronomical object detection [DE13; RSV+13; VFB+14; DT14;
Ruh13].

Automatic methods often require careful tuning of algorithmic parameters to achieve
the highest analysis quality. Furthermore, in case the method builds on supervised machine
learning techniques, training data is assumed as input. Hence, the effort of manual image
analysis is shifted to parameter tuning and possibly the creation of training data. Particularly
the latter is subjective and involves tedious, time-consuming work [HBR+12], just like manual
image analysis does. However, avoiding subjectivity and the entailed lack of repeatability
of results is one of the desired goals for which automatic analysis methods are used in the
first place [HBR+12; Oli02]. This contradiction alleviates as long as the same modality

1.1. Motivation and Relevance 3

is considered and measurement conditions are kept constant: Time-consuming parameter
tuning and creation of training data have to be done only once, and their results can benefit
all further analyses. Subjectivity in training data creation is less of an issue because the
trained model remains the same over all analyses. Hence it incurs the same subjectivity in a
repeatable fashion, yielding repeatability of results.

If measurement conditions change, however, ensuring high quality analysis results may
require parameters to be re-tuned and new training data to be created, in order to adapt the
analysis process to the new conditions. Changes in measurement conditions are frequently
encountered during prototype development of new sensor technologies like PAMONO. A
desire for methods that can adapt to different experimental scenarios has also been reported
in cell detection [ALN+12]. One class of highly adaptive methods is constituted by machine
learning: Knowledge is abstracted from the training data itself, thus creating predictive
models that are specifically adapted to this training data. In case of supervised machine
learning this entails the need for creating new training data for each prototypical sensor
setup, which can pose a bottleneck. Hence a need for methods facilitating and accelerating
the creation of training data can be identified in reaching adaptivity via supervised machine
learning. Another way of constructing highly adaptive methods is providing a large number
of algorithmic parameters controlling how the data is processed, such that changes in the
physical parameters of the sensor setup can be accommodated by changes in algorithmic
parameters. However, exhaustive manual tuning of algorithmic parameters for every new
sensor configuration examined during prototype development slows down the advancement of
the sensor technique. Manual parameter tuning is tedious if the parameter space is small
and infeasible if it is large. Furthermore, it is considered “more of an art than a science”
[BBB+11] as it is not a systematic approach. Nevertheless, recent improvements of results
in image classification benchmarks were often due to finding better parameters for existing
approaches, rather than better new approaches [BBB+11]. For these reasons, automating the
search for such better parameters is a desirable goal: Reaching this goal means that automatic
algorithms are not only used for avoiding the bottleneck of manual data analysis but also for
avoiding the entailed bottleneck of configuring the algorithms driving the automatic analysis.
This is of particular value if algorithms have to be configured numerous times in order to
adapt to changing measurement conditions, as in sensor prototype development.

Having an automatic and automatically adapting analysis process available during sensor
prototype development can vastly accelerate this development: The impact of changes made
to the sensor setup can be thoroughly studied without the need to manually analyze the
data or to manually adapt algorithmic parameters of the analysis process. Different sensor
setups can be compared, and those most suitable for different purposes can be identified.
Such comparisons largely benefit from the increased repeatability delivered by automation.
Additionally, the analysis process can later be used to analyze the data produced by the final
sensor setup: Once sensor development is completed, a well-tested analysis process is readily
available.

PAMONO Data Analysis

As touched upon above, PAMONO is a prototypical biosensor in development, and the
previous paragraph fully applies to it. Hence, this thesis devises an adaptive microscopy data
analysis process, using PAMONO as its application scenario. The analysis process consists of

4 Chapter 1. Introduction

a nano-object detector and a learned model for classifying detector output. It is embedded
in an approach that automatically adapts the arising algorithmic parameters to changing
measurement conditions and that uses machine learning to compute the classifying model that
separates detector output into correct and spurious responses. In the detector, selections are
made among competing algorithms with equivalent input and output behavior, and optimized
parameters for the selected algorithms are determined in order to adapt the detector to the
data and thus to the respective sensor setup. Both is done in a fully automatic fashion,
after a data-driven signal model was seeded, which involves only minor manual effort. The
signal model empirically simulates image formation on the PAMONO sensor and is used to
create large amounts of synthetic ground truth data with respect to which the parameters
are optimized and which serves as training data in learning the classifying model.

Manual analysis of the data produced by a single PAMONO experiment involves the
examination of a sequence on the order of 4000 images and takes approximately two days per
analyzing person. A bottleneck this severe impedes large-scale experiments, the attainment of
good statistics and enhancing the sensor prototype. In contrast, given algorithmic parameters
and a classifying model, an average application of the automatic analysis process takes time
on the order of seconds: The real-time capability delivered by the PAMONO sensor is retained
by this analysis process. The encompassing approach determining optimized parameters and
the classifying model can be run overnight, with no interaction required. Running such an
optimization is only necessary if measurement conditions were changed in a way that rendered
the previous parameters and classifying model unsuitable. After that, an arbitrary number of
experiments can be analyzed in real-time, until measurement conditions are changed again.
The presented approach neither assumes knowledge about the underlying algorithms and
their parameters, nor about machine learning, making it readily applicable by lab personnel
in everyday lab practice.

One particular challenge pertaining to PAMONO data analysis is that the sequences
of images provided by the sensor may exhibit Signal-to-Noise Ratios (SNRs) below two.
Previous approaches to signal detection in comparable data already fail at higher SNRs: All
algorithms surveyed in [CWG01] fail for SNRs approaching four, while for the best methods
surveyed in [SLN+09], an SNR approaching two is the ultimate limit. In order to successfully
analyze PAMONO data, it is mandatory to push the envelope further by handling SNRs
below two. The analysis process developed in this thesis demonstrates that by optimized
combination of denoising and other image processing methods, nano-objects in PAMONO
data exhibiting a median SNR below two can be detected. This enables finding nano-objects
with diameters down to 100 nm. For comparison, a median SNR below two means that at
least half of the occurring nano-objects are likely to be missed by the best of the algorithms
surveyed in [CWG01] and [SLN+09].

In a Nutshell

As a quick summary, the central topics covered in this thesis are the following:

• An automatic analysis process is devised for the data produced by the PAMONO sensor,
which enables biological virus detection.

• Median SNRs below two are handled by this process which allows the detection of
nano-objects with diameters down to 100 nm.

1.2. Contributions of this Work 5

• The analysis process is embedded into an approach which automatically adapts the
underlying algorithmic parameters and the classifying model to changes in measurement
conditions. One use case of this approach lies in accelerating the advancement of the
PAMONO prototype towards a final sensor setup.

• No expertise concerning the underlying algorithms or machine learning is assumed in
order to operate the developed approach and to conduct analyses with it. This enables
ready applicability in a lab scenario.

1.2 Contributions of this Work

Investigating the central topics listed at the end of the previous section led to a number of
contributions made by this thesis. Large parts of these contributions have previously been
published in the context of peer-reviewed national and international conferences and journals.
The corresponding publications are [SWL+11; SLW13; LST+13a; LST+13b; SLW+14;
SFL+14; STM+15]. The subsequent text lists and summarizes the individual scientific
contributions made by this thesis. Complementary information focusing on the publications
in which these contributions were made is given in Appendix C.

Signal Model for the PAMONO Biosensor. An empirical signal model of the PA-
MONO sensor is devised which describes the formation of PAMONO imagery. It serves as
part of a data-driven method for creating synthetic PAMONO images with ground truth
information about the contained nano-objects. A small number of manually segmented
examples of the nano-objects to be detected is required to seed the signal model. Then it is
applied to synthesize a large number of PAMONO images annotated with ground truth, with
respect to which automatic parameter optimization and supervised learning of a classifying
model are carried out. The signal model is validated in terms of its suitability for these
two tasks: It is demonstrated that parameters optimized for this synthetic data can be
transferred to real sensor data with only minor decrease in analysis quality. Furthermore, it
is demonstrated that a classifying model learned from this synthetic data also yields high
quality classification of real data.

Analysis Process for PAMONOData. A two-part analysis process for the data provided
by the PAMONO sensor is devised. The first part is a highly sensitive nano-object detector
which identifies spatiotemporal regions in the data that are candidates for being affected by
nano-object adhesions. This detection encompasses existing and newly developed methods for

• PAMONO-specific image processing (newly developed methods),
• denoising (existing methods),
• time series classification (newly developed methods) and
• segmentation (existing methods).

High sensitivity of this detection is demonstrated. The second part aims at precision: A clas-
sifier process for separating the nano-object candidate regions provided by the detector into
actual nano-objects and spurious detector responses is presented. The central contributions
made in this context are as follows:

6 Chapter 1. Introduction

• A set of features is identified which is used in classifying detector results. It contains
features of shape, spatial and spatiotemporal intensities.

• A modular supervised classification process for the resulting data is constructed that
builds on existing machine-learning algorithms.

• The modules and algorithms that perform best on the given data are identified.

The classifying model eliminates spurious detector responses, thus complementing the goal of
high sensitivity pursued by the detector with corresponding precision. The success of this
division into a detector collaborating with a classifier is demonstrated with respect to the
task of counting the nano-objects appearing in PAMONO data.

Automatic Adaptation to Varying Measurement Conditions. The parameters con-
figuring the detector and the employed classifying model are automatically adapted to changes
in measurement conditions and PAMONO sensor setup. This is achieved by the SynOpSis ap-
proach, which integrates synthesis based on the PAMONO signal model into an optimization
of detector parameters and classifying model, which are then used in the final analysis of
the real data provided by the sensor. Configuring the proposed PAMONO data analysis
process by means of SynOpSis yields the first method capable of analyzing PAMONO data
with particle sizes down to 100 nm. This demonstrates empirically that automatic analysis
of PAMONO data is feasible. SynOpSis combines multi-objective parameter optimization
with a parametric image processing pipeline. This pipeline is composed of the nano-object
detector and the classifier which embeds machine learning-based computation of a classifying
model into this optimization. Automatic evaluation of pipeline objectives is enabled by the
synthetic ground truth, with respect to which both, parameters and classifying model, are
determined. No familiarity with the algorithms and parameters underlying the detector
and classifier is required for scientists to benefit from the adaptivity these methods provide.
Furthermore, no experience in optimization or machine learning is assumed. Only synthetic
ground truth is needed, which can be obtained using the signal model discussed above,
requiring a small number of manually segmented examples of the type of nano-objects to be
detected. Hence solely domain knowledge concerning the field of application of the PAMONO
sensor is demanded for using SynOpSis. This is a huge advantage for practical application in
a lab environment.

Validation. The process proposed for PAMONO data analysis and the SynOpSis approach
for automatic adaptation of its algorithmic parameters and classifying model are validated with
respect to synthetic and real sensor data. Their capabilities and limitations are investigated in
face of PAMONO experiments with varying measurement conditions and increasing difficulty.
Pareto-optimal parameter sets are examined to determine their commonalities in order to
find out what makes a good parameter set and to assess competing algorithms. Predictability
of objective values from parameter sets is investigated. Run times are measured and the
real-time-capability of detection and classification is verified: Analysis results can be computed
and visualized for the sensor operators while measurements are being taken. Overall, the
achieved results are an empirical demonstration of the ways in which image processing and
data analysis can benefit from automatic parameter optimization and machine learning, based
on synthetic ground truth.

1.3. Organization of the Thesis 7

1.3 Organization of the Thesis

The organization of this thesis is as follows. Chapter 2 introduces the PAMONO biosensor as
the application scenario in which the data analysis to be developed is conducted. It elaborates
further on the capabilities and fields of application of PAMONO and discusses its underlying
physics. Tightly connected to these physics are the properties of the data provided by the
sensor, and thus the data analysis task to be solved, which is discussed at the end of that
chapter.

Chapter 3 develops the SynOpSis approach on an abstract level: It firstly identifies the type
of abstract detection and classification task that PAMONO data analysis belongs to and then
presents SynOpSis as a method for solving such tasks. As SynOpSis can basically be regarded
as an extended image processing pipeline undergoing automatic parameter optimization,
literature related to these topics is reviewed. Then the modules for synthesis, detection and
classification are developed abstractly, before they are revisited concretely for the PAMONO
scenario in Chapters 4 to 6. The remainder of Chapter 3 describes the multi-objective
optimization of detector and classifier and the employed techniques for desirability-based
model selection and for performance estimation.

Chapter 4 is the first of three subsequent chapters that concretise the abstract modules of
SynOpSis from Chapter 3, custom-tailoring them specifically for the PAMONO sensor. In
Chapter 4, the creation of synthetic ground truth data is covered, which involves presenting
a signal model for the PAMONO sensor, along with an empirical method for using this signal
model in generating synthetic PAMONO imagery.

Chapter 5 concretises the detector for PAMONO data analysis: PAMONO-specific image-
and time series processing techniques are presented along with general methods for denoising
and segmentation in the spatiotemporal data provided by the sensor. The parameters of each
method employed in the detector are listed and discussed because they are to be optimized
by SynOpSis.

Chapter 6 presents the modular classifier process used in PAMONO data analysis. First
of all, the features employed by the classifier are depicted, which are extracted from the
output of the detector. Then the modules used in the classification process are described,
encompassing class balancing, feature scale normalization, feature selection and finally the
examined learning algorithms.

Chapter 7 contains the overall evaluation of applying SynOpSis for PAMONO data
analysis. It introduces the employed experimental data and the physical parameters of
the PAMONO sensor that were varied in recording that data. Furthermore, it concretises
the remaining degrees of freedom of SynOpSis that were left open in Chapter 3, in order
to separate the description of the method from the description of its PAMONO-specific
experimental setup. Results are firstly reported for a single PAMONO experiment in order
to illustrate the outcome of one application of SynOpSis. Subsequently, results aggregated
over all experiments are regarded and different variants of applying SynOpSis are evaluated.
Final analysis results are reported per experiment, and the quality of performance estimates,
method specificity and real-time-capability are investigated. Furthermore, the Pareto fronts
of optimized parameter sets are examined, thus determining what makes a good parameter set.
Predictability of parameter set quality is assessed by computing response surface models for
objectives and other measures of quality over parameter space. Finally, the cross-experiment
generalization performance of both, detector parameters and classifying models is evaluated.

8 Chapter 1. Introduction

Chapter 8 serves as a conclusion to the evaluation in Chapter 7 as well as to the overall
thesis. Results are summarized and discussed within a broader scope. Directions for future
research, based on the findings of this thesis, are presented.

Each chapter of this thesis builds upon the previous one, hence a linear reading order is
recommended. Readers not interested in the PAMONO sensor possibly prefer Chapter 3 as it
depicts the SynOpSis approach on an abstract level and abstractly describes the type of task
that can be solved by it. In this case Chapters 4 to 6 may serve as optional exemplifications.
For readers interested in PAMONO, it is recommended to read all chapters in linear order
and to optionally peek ahead from Chapter 3 to Section 7.3, which complements the abstract
depiction of SynOpSis with a PAMONO-specific configuration.

1.4 Acknowledgment

Part of this work has been supported by Deutsche Forschungsgemeinschaft (DFG) within the
Collaborative Research Center SFB 876, Project B2.
URL: http://sfb876.tu-dortmund.de/

http://sfb876.tu-dortmund.de/

Chapter 2

Biological Virus Detection with the
PAMONO Sensor

Contents
2.1 PAMONO Capabilities and Applications 9
2.2 The Physics Behind the PAMONO Sensor 12
2.3 PAMONO Data and Analysis Task . 13

Analysis of the data recorded by the PAMONO sensor serves as the central field of
application examined in this thesis. PAMONO data analysis is the task to be solved, in order
to demonstrate the capabilities of the presented approach. In this chapter, the PAMONO
sensor is presented from three perspectives: Section 2.1 takes an application point of view
and presents some of the capabilities and fields of use of the PAMONO sensor, with a focus
on its primary application, i.e. the detection of biological viruses. Section 2.2 provides a
physical point of view and explains how these capabilities are achieved by exploiting the
Surface Plasmon Resonance (SPR) effect. Finally, Section 2.3 takes a data-oriented point of
view, by describing the data output by the sensor and the desired results to be output by the
analysis approach proposed within this thesis.

2.1 PAMONO Capabilities and Applications

Plasmon-Assisted Microscopy of Nano-Sized Objects (PAMONO) [ZKG+10] is a method
enabling the indirect detection of objects on the nanometer (nm) scale, using equipment from
optical microscopy. Conventional optical microscopy is not suitable for observing nano-objects
directly, due to the following relationship investigated by Mie [Mie08]: The intensity of the
light scattered by an object with a radius smaller than the wavelength of the employed
light decreases in the sixth power of the radius of the object. Therefore, the intensity of
light scattered by nano-objects is by orders of magnitude smaller than for objects on the
micrometer (µm) scale, if visible light is used (wavelength ≈ 380 nm to 740 nm). This impedes
direct detection of nano-objects by means of conventional optical microscopy. Furthermore,
even if the nano-objects would reflect/emit a sufficient amount of light, the diffraction limit
discovered by Abbe [Abb73] still limits optical microscopy to a maximum lateral resolution
of ≈ 250 nm, if visible light is used.

The PAMONO sensor enables optical detection of nano-objects by exploiting the Surface
Plasmon Resonance (SPR) effect: An individual nano-object can be indirectly detected by
observing the SPR effect it causes on the micrometer scale. This effect occurs when the
nano-object attaches to the sensor surface and hence its occurrence can be taken as an indirect

9

10 Chapter 2. Biological Virus Detection with the PAMONO Sensor

Figure 2.1: Portable PAMONO Sensor. A prototypical PAMONO sensor [ZKG+10; WGT+10] is shown,
built into a portable case that is approximately 45 cm wide. Processing the sensor data can
be handled by a portable laptop computer in real-time [LST+13a; LST+13b]. Details on the
components of the sensor are given in Section 2.2 and Figure 2.2. Photograph courtesy of Pascal
Libuschewski.

proof for the attaching nano-object. In contrast to the sixth power relation between intensity
and object size as in Mie scattering, the observed intensity of the effect in PAMONO decreases
approximately linearly with object size [ZKG+10]. Therefore, the effect is bright enough to
be detected. Furthermore, its spatial extension is on the micrometer scale, hence enabling its
detection with conventional optical microscopy techniques. These properties make PAMONO
a new method for bridging the gap between the micrometer- and the nanometer scale in
optical microscopy.

Unlike super-resolution techniques such as Stimulated Emission Depletion (STED) mi-
croscopy [HW94] or Stochastic Optical Reconstruction Microscopy (STORM) [RBZ06] it does
not rely on fluorescence or any markers. The light observed in PAMONO is not emitted by the
objects under observation but is due to SPR effects in the surface around them. This makes
PAMONO more similar to conventional optical microscopy, resulting in comparably low device
cost because common off-the-shelf components can be used. In contrast to conventional SPR
techniques [BSB+04; CKB+05], not only the concentration of nano-objects in a sample can
be estimated but individual nano-objects can be detected because each attachment manifests
as a discrete event on the sensor surface.

2.2. The Physics Behind the PAMONO Sensor 11

t

Nano-Object
Adhesions
Pe.g.fVirusesR

In
te

n
si

ty

Nano-Object

Empty
Sensor
Area

TimefSeries
offImages t

Timefof
Adhesion

Diode

CCDfC
am

era

Gold

Attached
Nano-Object Coating

FlowfCell

FlowingfNano-Objects

Lens
Prism

LocalfIncreasefin
ReflectedfIntensity

Figure 2.2: PAMONO Sensor and Data. Schematic depiction of the PAMONO sensor (left), recording
a time series of intensity images (center). Nano-objects attaching to the sensor surface (left)
manifest as faint blobs in the spatial domain (center) and as step functions in the temporal
domain (right). The displayed step function in the temporal domain was chosen for illustration
purposes. Signal-to-Noise Ratios (SNRs) observed in real data make it considerably more difficult
to distinguish sensor noise from time series related to nano-object adhesions, cf. Figures 7.1 and
7.2 for more representative example time series. Figure adapted from [WGT+10].

PAMONO can detect any type of nano-object that can be brought to attach to the
sensor surface because the attachment is the constituent ingredient for triggering the SPR
effect. The primary use case of the sensor is detecting biological viruses. In this scenario,
antibodies that are specific to a certain type of virus of interest are used to mobilize the
sensor surface, and the viruses are detected as they attach to the antibodies. In contrast to
non-optical, nano-resolution-capable microscopy like Electron Microscopy (EM), PAMONO
does not require a vacuum, hence intact viruses can be indirectly observed in their natural
surroundings [WGT+10]. The observation can occur in real-time, enabling e.g. monitoring
of the attachment processes or very fast diagnoses. Automatic analysis of the sensor data
can be carried out in real-time as well [LST+13a; LST+13b], which will be covered in this
thesis. The sensor and the required processing units can be realized in a portable device,
making PAMONO a technique for virus detection beyond the laboratory environment, cf.
Figure 2.1. Furthermore, its principle can be reversed by using a defined sample of viruses
and investigating whether or not a newly developed antibody can make the sample viruses
attach to the sensor, hence yielding applications in pharmacology. Selectivity of the method
can be controlled by making different areas of the sensor surface attach different types of
nano-objects: For example different spots of the sensor surface can be coated with different
antibodies, enabling the detection of multiple types of viruses on a single sensor. Virus types
can then be distinguished by their location. PAMONO is, however, not limited to biological
virus detection. It can detect any type of nano-object for which there is a method of attaching
it to the sensor surface. This makes it applicable e.g. in detecting fine dust and particulate
matter in industry or car exhaust.

In summary, PAMONO is a versatile technique for indirectly detecting nano-objects by
means of inexpensive optical microscopy. The sensor, as well as the processing unit enabling
automatic data analysis, can be realized as portable devices, allowing for applications beyond
the confined environment of a laboratory.

12 Chapter 2. Biological Virus Detection with the PAMONO Sensor

2.2 The Physics Behind the PAMONO Sensor

The physical principles and details behind the PAMONO sensor will be provided in this
section. The order of explanation follows the left part of Figure 2.2, which shows a schematic
depiction of the sensor setup. This setup is a modified Kretschmann configuration [Kre71]
for SPR microscopy. A superluminescent diode emits light through a glass prism upon a
thin gold layer on a glass plate that is fixed to the prism. This gold layer constitutes the
sensor surface. The light reflected due to total internal reflection (details below) is imaged
through a lens upon a 12-bit grayscale industrial Charge-Coupled Device (CCD) camera,
which records a time series of images of this reflected light. The top of the gold layer is coated
with a substance to which the nano-objects of interest can attach, e.g. antibodies that are
selective for a certain virus under observation. The nano-objects are pumped through a flow
cell over the gold layer, and by diffusion an assessable amount of them gets close enough
to the coating to become permanently attached to the surface. When this happens, the
Surface Plasmon Resonance properties in a micrometer scale region around the attachment
site change, increasing the intensity of light reflected onto the CCD. Measurement of these
small increases of intensity provides the foundation of how SPR-based biosensors work.

The physical explanation of the SPR effect causing these increases is as follows [Pat05]:
The light emitted by the diode enters the prism and hits the surface with the gold layer at
an angle that is beyond the critical angle for total internal reflection at the given interface
between a material with higher refractive index (glass prism) and a material with lower
refractive index (liquid in the flow cell). Besides being reflected at the interface, the photons
of the light beam can alternatively excite oscillation of the electrons in the gold layer. Such
an oscillating electron is called a surface plasmon. Hence a photon can either be reflected
towards the CCD, or it can be transformed into a surface plasmon. Every photon becoming
a surface plasmon means that less light is reflected onto the CCD. The ratio of photons
becoming surface plasmons depends on the incidence angle of the light beam with respect to
the gold layer, and the angle maximizing this ratio is called the Surface Plasmon Resonance
angle. As a consequence, the SPR angle is the minimizer of the intensity reflected towards
the CCD, beyond the angle of total internal reflection. Now this SPR angle sensitively
depends on the refractive index of the involved material: A nano-object attaching to the
sensor surface (e.g. a virus attaching to an antibody) causes a local change in refractive index
at the interface, which entails a change in the local SPR angle. If the light hits the interface
at the previous SPR angle, i.e. the minimizer of reflected intensity, any local change in the
SPR angle increases the amount of light reflected from the affected region. This enables
indirect detection of nano-objects attaching to the sensor surface by finding the regions of
increased reflected intensity.

In PAMONO the incidence angle of the light emitted by the diode upon the gold layer is
chosen as the minimizer of the SPR reflectivity curve, cf. Figure 1 in [ZBM+07], thus following
the idea presented above. Hence, any local change in SPR properties causes an increase in the
amount of light that is reflected from the interface to the CCD camera. The spatial extension
of this increase is a micrometer scale blob (despite being the effect of a nanometer scale cause),
therefore its optical detection is possible. On the other hand, the magnitude of the increase in
intensity is only a fraction of the intensity of the background signal recorded by the CCD. If

2.3. PAMONO Data and Analysis Task 13

this background signal is computationally removed1 and the contrast of the result is stretched,
the blobs indicating nano-objects look like those displayed in the center of Figure 2.2. The
magnitude of the effect in PAMONO imaging is nevertheless a significant improvement over
direct optical imaging: While the intensity reflected by nano-objects decreases in the sixth
power with object size, due to Mie scattering [Mie08], the effect observed in PAMONO is
related approximately linearly to object size [ZKG+10].

Regarded on a per-pixel level, a nano-object attaching to the sensor manifests as a step
function in the recorded per-pixel time series of intensities, cf. Figure 2.2, right. A sufficient
number of spatially coherent pixels recording a step function at the same point of time serves
as the indirect proof of the attaching nano-object. In areas not affected by nano-objects, only
noise on an approximately constant background is recorded. This is what enables optical,
though indirect, detection of nano-objects in a microscopy device. The principle is summarized
in the acronym: Plasmon-Assisted Microscopy of Nano-Sized Objects (PAMONO). Note
that the time series on the right of Figure 2.2 were chosen for the purpose of illustration.
They do not provide a representative impression of real data: The Signal-to-Noise Ratios
(SNRs) observed in real data typically are lower, such that distinguishing time series related
to nano-object adhesions from those related to empty sensor areas by visual inspection is
considerably more difficult. Representative examples are given in the evaluation chapter, cf.
Figures 7.1 and 7.2.

Proportionality between virus concentration in the sample and the number of attachments
observed via PAMONO has been established by Shpacovitch et al. [STM+15]. Specificity
of the sensor responses to the viruses to be found has been demonstrated in the same work.
Further details concerning the physical principles behind the PAMONO sensor can be found
in [ZKG+10]. A mathematical model of the data provided by the sensor will be presented in
Chapter 4, which will also guide the image processing and classification techniques discussed
in Chapters 5 and 6.

2.3 PAMONO Data and Analysis Task

Conducting a measurement with the PAMONO sensor delivers a time series of images, each
recording the intensity of light originating from the sensor surface in the direction of the
camera. This time series of images can be considered as a spatiotemporal volume of intensities.
Figure 2.3 shows four of these images to which different processing has been applied, which
serves to illustrate the nature of the data. Each column corresponds to one type of processing
and each row corresponds to one of the four exemplary images. In total, the measurement
consists of 4000 images, hence the last row displays the final image. The left column shows the
raw data as it is recorded by the sensor. Comparing raw image 100 to raw image 4000 reveals
no difference that is apparent to visual inspection. What can be observed are interference
patterns on the sensor surface that remain approximately constant over all images and that
dominate the desired signal in the data. Hence, the center column shows differences between
the image indicated by the respective row and the first image in the measurement. In these
difference images, the approximately constant interference patterns are eliminated and the
desired signal is revealed on the same intensity scale as in the raw images of the left column.

1As a lookahead: A model of PAMONO signal formation, including the background signal, is provided in
Chapter 4, and a method for removing the background signal is described in Section 5.2. However, these are
not vital for understanding the current chapter.

14 Chapter 2. Biological Virus Detection with the PAMONO Sensor

(a) Image 100

(b) Image 1000

(c) Image 2000

(d) Image 4000

Figure 2.3: Time Series of PAMONO Images. Exemplary images recorded by the sensor are shown as
raw data (left column), and as difference images between the respective shown raw image and
the first raw image of the series without (center) and with amplification (right column).

2.3. PAMONO Data and Analysis Task 15

Nano-

Objects

Artifacts

Artifacts
Nano-

Objects

Figure 2.4: Data and Desired Output. For visualization purposes, a highly processed sensor image is
shown, giving an example of the output desired from the analysis process: The goal is to find and
count all nano-object adhesions (marked by circles), without mistakenly counting the structures
that are due to sensing artifacts (marked by rectangles) as nano-objects.

In image 4000, faint blob-like structures are (not easily) perceivable which correspond to
nano-object adhesions. The right column shows the same images as the center column, but
on a different intensity scale: The contrast in all images has been linearly increased by a
factor of five, revealing more and fainter blobs while amplifying sensor noise. The noise is
due to the CCD (chip readout noise [FM06]) and photon statistics (shot noise [BB00]) and is
aggravated by the derivative-like nature of taking a difference image.

The goal of quantitative analysis of this data is to find the attachments of nano-objects
to the sensor surface by finding their characteristic spatiotemporal signatures, which are the
sets of spatially coherent and temporally coincident step functions described in the previous
section. Figure 2.3 also serves to give examples of these signatures and their magnitudes in
comparison to noise and to the background signal. Since the volume of data is large (e.g. 4000
images with 750 px × 230 px in one measurement) and finding nano-object signatures manually
is slow, subjective, tedious and error-prone [HBR+12; Oli02], automation of this analysis
is desirable. The sought after output of an analysis process is illustrated in Figure 2.4. For
better visualization and hence clarity of presentation, the image has been processed with more
sophisticated methods than the processing described in the context of Figure 2.3. Details of
these methods are presented in Chapter 5. The circles in Figure 2.4 enclose the nano-object
attachments, as observed via PAMONO. Finding all of and only these nano-objects in a time
series of images are the two subtasks constituting the primary goal in the desired automatic
quantitative analysis process. Finding all nano-objects is impeded by the low SNR in the
data2, while finding only the actual nano-objects is impeded by the sensor artifacts marked
by rectangles in Figure 2.4. These artifacts have a temporal signature and intensity that is
similar to actual nano-objects. An analysis aiming at finding all nano-objects is very sensitive,
thus increasing the chance of erroneously reporting artifacts as nano-objects. Solving both
subtasks with sufficient quality enables automatic counting of the nano-objects in the data.
Hence conclusions about the concentration of nano-objects in the sample can be drawn
[STM+15]. Furthermore, by finding individual attachment sites, it is e.g. possible to monitor
differences in the attachment behaviors over several nano-objects and surface mobilizations.

2Figure 2.4 shows an experiment with a rather high SNR for better visualization, while Figure 2.3 gives a
better impression of commonly encountered SNRs.

16 Chapter 2. Biological Virus Detection with the PAMONO Sensor

Further goals of the analysis process are related to the resource-constrained scenario of
a portable sensor device: The first requirement is that the analysis process must run on a
portable computer, ideally an embedded system. This results in constraints on the allowable
energy consumption of the employed algorithms: The lower the energy consumption, the
more measurements can be done without recharging the battery of the portable device. In
addition to that, it is desirable that the analysis process can be executed in real-time because
then the data can be analyzed and displayed already during measurement. The goals of
low-energy real-time processing on an embedded system are treated in [NLE+15], while the
aspect of real-time capability is also touched upon in Chapters 5 to 7 of this thesis.

The last goal is associated with the aspect of facilitating further improvement and
development of the PAMONO technique: Due to its prototypical state, the sensor setup
described in Section 2.2 involves many physical parameters undergoing variation between
experiments, e.g. the quality of the gold layer, type of light source, wavelength and intensity of
its emitted light, type of camera, distance between sensor and camera, type and magnification
factor of the lens, observed image section, and different buffer solutions in the flow cell. All
these physical parameters can have an impact on the appearance of the images recorded
by the sensor. In order to maximize the quality of the analysis results, a flexible approach
is required that adapts the involved algorithmic parameters to best suit the given physical
parameters in the sensor setup.

Chapter 3

The SynOpSis Approach

Contents
3.1 Abstract Task Description . 18
3.2 SynOpSis Overview . 19
3.3 Related Work . 22
3.4 Synthesis Stage . 33

3.4.1 Signal Model . 33
3.4.2 Synthetic Ground Truth Patterns and Classification 34

3.5 Pattern Detector . 34
3.5.1 Input and Output . 35
3.5.2 Objectives . 35

3.6 Pattern Classifier . 40
3.6.1 Input and Output . 41
3.6.2 Objectives . 43

3.7 Optimization Stage . 46
3.7.1 Related Work . 47
3.7.2 Algorithm Choice for Optimizing PAMONO Data Analysis 48
3.7.3 Genetic Algorithms . 50
3.7.4 Multi-Objective Genetic Algorithms . 54
3.7.5 Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 56
3.7.6 Global versus Sequential Optimization of SynOpSis 58

3.8 Desirability Functions for Formalizing Expert Preferences 59
3.8.1 Harrington Desirability Functions . 60
3.8.2 Desirability Indices . 61
3.8.3 Desirability in SynOpSis . 62

3.9 Model Selection and Performance Estimation 63
3.9.1 Generalization Performance . 64
3.9.2 Model Selection . 65
3.9.3 Performance Estimation . 67

3.10 Summary of SynOpSis and Application Stage 68

In this chapter, the foundation is built for presenting the methods developed to solve the
PAMONO data analysis task described in Section 2.3. This foundation provides a modular
frame into which the PAMONO-specific components are later incorporated. Section 3.1
gives an abstract description of the PAMONO data analysis task, hence presenting its

17

18 Chapter 3. The SynOpSis Approach

conception adopted in this thesis. The perspective is problem-oriented, instead of being
application-oriented as in the previous section. This abstract view on the problems involved
in the task leads to Section 3.2 proposing a methodological approach to solving problems
that fit the abstract task description. This approach is denoted the SynOpSis approach
(Synthesis/Optimization/Analysis) because it creates synthetic datasets and uses them in
optimizing algorithms which are subsequently applied in real data analysis. SynOpSis is
the outer frame into which the application-specific modules for PAMONO data analysis are
inserted. The order of presentation in this chapter, as well as in the rest of the thesis, is
top-down. Hence, Section 3.2 gives an overview of the SynOpSis approach on a high level of
abstraction, while its constituent components are depicted in more detail in the remaining
sections of Chapter 3. As these sections are organized along the workflow of SynOpSis,
Section 3.2 also serves as an overview of this chapter.

3.1 Abstract Task Description

After Section 2.3 gave an account of the concrete task of PAMONO data analysis, this section
restates that task on an abstract level, to prepare for Section 3.2 introducing the approach
proposed to solve tasks fitting this abstract description. Section 2.3 identified finding all and
only the nano-objects in a time series of images as the central task in PAMONO data analysis.
Talking about this in an abstract fashion requires more abstract terminology:

Terminology 3.1. The term pattern is in the following defined as a region that is a candidate
for containing an object of interest in the data. Candidate regions and hence patterns are
characterized by being salient in an application-specific sense of the term ‘saliency’. The
process of identifying such regions is called pattern detection1. Two classes of patterns can
be distinguished, and this distinction is defined by their causations: Firstly, a pattern can
be caused by an object of interest. Such a pattern is called a target pattern. Secondly, a
pattern can be caused by a spurious signal that is not associated with an object of interest.
Such a pattern is called a non-target pattern.

Exemplary causes of target patterns are the nano-objects in PAMONO. Exemplary causes
of non-target patterns are the artifact and background signals in PAMONO. The concrete
task of finding all and only the nano-objects in a time series of PAMONO images can then
be stated abstractly as finding all target patterns in a given dataset and, if given, filtering
out the non-target patterns incurred as “by-catch”. Hence the abstract analysis task can be
divided into two subtasks: The first is a detection task: All target patterns in a given input
dataset have to be detected. Aiming at not missing any target patterns requires a highly
sensitive detector, which in turn might yield, besides the target patterns, a high number
of non-target patterns. The second subtask is a classification task: Its goal is to separate
the set of detected patterns into target and non-target patterns. Hence the overall task is
detecting and classifying a finite number of patterns with (ideally) well-defined and distinct
appearances for the target and non-target class. This is the conception of the abstract task
to be solved as adopted in the thesis.

Figure 3.1 illustrates the abstract task and its relation to PAMONO data analysis. The
input consist of images in which all objects of interest are to be found. A detector finds a set

1The term ‘pattern detection’ is usually defined more broadly, but for consistent terminology, this thesis
employs a more narrow definition.

3.2. SynOpSis Overview 19

t

AbstractfTasks

PAMONO

TargetfPatterns

Non-TargetfPatterns

Misses

X

t

X

X
X

X

Input Images

Detection

• Find all targetfpatterns,
i.e.fallfregionsfcontaining
objectsfoffinterest

• Findingfnon-target
patternsfisfpermissible/
recoverable

• Misses,fi.e.fundetected
targetfpatterns,farefnot
permissible/recoverable

• HighfSensitivity

Classification

• Separatefdetected
patternsfintoftwo
classes:ftargetfpatterns
andfnon-targetfpatterns

• Classificationfhence
identifies subsetfof
objects offinterest

• Recoversfnon-target
detectionsfbyfmarking
themfaccordingly

Output
Classified
Patterns

Patterns

Detected Patterns Classification

Figure 3.1: Abstract Task Description and PAMONO Correlates. The upper part of the figure
displays the abstract conception of the PAMONO data analysis task, as adopted in this thesis.
The overall task is regarded as divided into two subtasks: The first subtask is detection, aimed
at finding the set of all patterns in the data, where a pattern is defined as a region that is a
candidate for containing an object of interest. The second subtask is classification, aimed at
restricting this set to only the patterns caused by actual objects of interest. The lower part of
the figure illustrates these tasks by showing their correlates in PAMONO data analysis. Here
the patterns of interest are caused by actual nano-object adhesions, while those not of interest
are spurious detector responses due to sensing artifacts as seen e.g. in Figure 2.4.

of patterns under the policy that non-target detector responses are permissible, while not
responding to a target pattern, and hence missing an object of interest in the data, is not
permissible. The reason for this policy is that non-target patterns can be sorted out in the
subsequent classification, while missing target patterns can not be recovered. The output of
classification is the set of classified patterns.

Section 3.2 now introduces one possible approach to solve tasks like the one described in
this section. With this approach it is possible to conduct quantitative analysis of PAMONO
data, hence it can be used to solve the concrete task described in Section 2.3.

3.2 SynOpSis Overview

As stated in Section 2.3, the volume of data to be processed within a PAMONO measurement
is very large, and manual analysis is slow, subjective, tedious and error-prone [HBR+12;
Oli02]. Hence full automation of quantitative analysis is desired. The algorithms to be used
for solving the detection and classification subtasks identified in the previous section operate
in a fully automatic manner, once suitable algorithmic parameters are known. This makes
automatically analyzing a large volume of data equivalent to automatically determining
suitable algorithmic parameters from a possibly large parameter space. Suitability of points in
that parameter space is tightly connected to the physical parameters defining the experimental
conditions in PAMONO data acquisition: The latter are subject to change due to PAMONO
prototype development, and careful adaptation of algorithmic parameters to changes in
physical parameters is necessary for high quality analysis results. While performing this

20 Chapter 3. The SynOpSis Approach

Optimization Stage

Patternb
Detector

Parameters

Model Selection and Performance Estimation

Application Stage (Real-time)

Synthesis Stage

SignalbModel

Patternb
Detector

Pattern
Classifier

Input
RealbSensorb

Images

Synthetic
Images

GroundbTruth
Classification

ParetobFrontbofb
Parameters

GroundbTruth
Patterns

Patterns
Patternb

Classifier

Classifiedb
Patterns

Valuesbofb
Objectives

Featureb
Extraction

Patterns
Featureb

Extraction
Patternsbwithb

Features

Patternsbwithb
Features

Classifiedb
Patterns

Modelb
Selection

Performanceb
Estimation

Performanceb
Estimates

Output

Updateb
Parameters

Selected
Parameters

Evaluate
Objectives

Offline

Real-time

Figure 3.2: Overview of SynOpSis Approach. Real sensor data is used as the input of a Synthesis stage
generating ground truth-annotated training data. The training data is used in an Optimization
stage to automatically find Pareto-optimal parameter sets for a pattern detector and a pattern
classifier. Model selection with desirability functions is applied to determine the most desirable
parameters for both, by running them on synthetic validation data. The performance of detector
parameters and classifying model on unseen real data is estimated by applying them to unseen
synthetic test data. Finally, both are passed to the real-time capable application stage where they
are applied to the real input data, producing the final detection/classification results. Section 3.2
describes this figure in more detail.

adaptation of parameters manually is already more convenient than full manual data analysis,
it provides no information about the estimated quality of the attained results, and if the
parameter space grows larger, its manual exploration is severely aggravated.

In order to attain high quality analysis results and quality estimates in a fully automatic
fashion, an approach of data synthesis and optimization is proposed, which is hence denoted as
SynOpSis (Synthesis/Optimization/Analysis): A Synthesis stage generates synthetic images
mimicking the signal properties of the real input images to be analyzed. The synthetic images
are annotated with ground truth about the target patterns2 they contain. This ground truth
is known because the target patterns are created synthetically at defined locations, using a
signal model. Ground truth about the non-target patterns is known implicitly because any

2In addition to that, in case multiple classes of target patterns are to be distinguished, the target patterns
can be labeled with their individual classes. SynOpSis supports multi-class target patterns, however, the
discussion given throughout this thesis is limited to the case of a single target pattern class that has to be
distinguished from the non-target class. Though, where applicable, additional information on multi-class
support is provided in footnotes.

3.2. SynOpSis Overview 21

detected pattern that does not correspond to a ground truth target pattern is a non-target
pattern. Knowing the locations and classes of the patterns detected in the synthetic images
enables the definition and automatic evaluation of objective functions measuring detection
and classification quality. Optimizing these objective functions with respect to the algorithmic
parameters involved in the data analysis process is a method to automatically obtain suitable
points in a large parameter space.

The SynOpSis approach will be presented abstractly in the remainder of this chapter.
Furthermore, the subsequent chapters of this thesis will complement this abstract depiction
by specializing the presented components towards PAMONO, thus separating the concept
behind SynOpSis from the concrete algorithms to be employed in processing PAMONO data.

Figure 3.2 gives an overview of SynOpSis as a whole and serves as a guide through the
rest of this thesis. The brief description given now follows the flow of data in the figure
from input to output and shortly introduces the components of SynOpSis. In the figure,
rectangles represent data tokens and rounded rectangles represent processing steps. The
input of SynOpSis consists of the real images to be analyzed. Before this analysis takes
place (bottommost part of the figure), the Synthesis stage is run (leftmost part of the figure):
A signal model (cf. Section 3.4) is applied to produce ground truth-annotated synthetic
training data. This data consists of synthetically generated images with target patterns, both
mimicking the signal properties of the real input images. By being synthetically constructed,
location and class of the target patterns are known. Hence an ideal detection and classification
result is available with respect to which the quality of computed detections and classifications
can be evaluated. After the Synthesis stage, the Optimization stage is run (top right part of
the figure). In this stage, the pattern detector (cf. Section 3.5) is run on the synthetic training
images using initial detector parameters. It detects a set of patterns. These patterns are
then annotated with features to be used in pattern classification. The pattern classifier (cf.
Section 3.6) receives as inputs the feature-annotated patterns and initial classifier parameters.
From these inputs it computes a model that classifies the patterns. The detected patterns
and their classes as assigned automatically by the pattern classifier are then compared to
the synthetic ground truth, and the quality of the achieved detection and classification
is assessed by evaluating suitable objective functions based on this comparison. Besides
measuring results quality, these objective functions can also be regarded as measures of
the quality of the algorithmic parameters employed in the detector and classifier. Given
these measures, the parameters are updated in a promising direction of the search space
of detector and classifier parameters, and the loop body is run again (cf. Section 3.7 for
more details on the Optimization stage). After the loop terminates, the set of points in
parameter space that are non-dominated3 in objective space is examined to determine the
single most desirable non-dominated point. This is done by computing a desirability index
(cf. Section 3.8) of the objective functions within a statistical model selection (cf. Section 3.9).
Furthermore, a performance estimate is computed by running detector and classifier with the
selected parameters on unseen synthetic test data. This estimate consists of evaluations of
performance measures that are relevant for the analysis task. It estimates the performance of
the given parameters on unseen data and is one of the two outputs of the SynOpSis approach.
Finally, as optimized detector and classifier parameters are known, both are applied to
the real data to be analyzed (cf. Section 3.10): The real sensor images are input to the

3Throughout this thesis, the concept of Pareto-optimality [Deb01] is used to define the point set that
performs best with respect to objective space. This concept is discussed in more detail in Section 3.7.4.

22 Chapter 3. The SynOpSis Approach

pattern detector, using the optimized detector parameters, and yielding patterns in the real
data. Features are extracted from these patterns, which are then employed in classification.
The pattern classifier uses a classifying model trained beforehand from synthetic ground
truth. The learning algorithm used to compute the classifying model receives the parameters
determined during the Optimization stage. The computed classification aims at labeling
target and non-target detector responses as such. The classified patterns are output as the
analysis result. For the pattern detector and classifier proposed in the context of PAMONO
(Chapters 5 to 6), the analysis can be performed in real-time, once detector and classifier
parameters (involving the classifying model) have been determined [LST+13a; LST+13b].
That means the Application stage in Figure 3.2 is real-time capable for PAMONO data
analysis. As long as the sensor setup and the type of nano-objects in PAMONO do not
change, the offline Optimization stage need not be executed again. Hence series of consecutive
PAMONO measurements with unchanged sensor setup and nano-object type can be performed
in real-time and rapid succession.

As can be seen from comparing Figures 2.4 and 3.1, data analysis in PAMONO as described
in Section 2.3 falls into the category of the abstract task description from Section 3.1. Hence
the task has a structure that makes it solvable with SynOpSis. The next section gives an
overview of related work in the field of automatic tuning of algorithmic parameters, as well
as in the field of image processing pipelines. All sections after that follow the flow of the
data in Figure 3.2 and provide more details on each processing step. Finally, Chapters 4 to 6
provide a signal model, pattern detector and pattern classifier that are custom-tailored to the
PAMONO application scenario.

3.3 Related Work

In presenting the literature related to the topics of this work, the same top-down approach as
in the overall thesis is followed. Hence this section starts by firstly regarding the superordinate
topic of automatic tuning of the parameters of given algorithms. Abstractly speaking, this
parameter tuning can be regarded as an outer loop around the image processing pipeline in
SynOpSis (cf. Optimization stage in Figure 3.2). Secondly, literature related to the components
of this image processing pipeline, especially to the pattern detection and classification
components, is discussed, and the relations and differences to SynOpSis and to PAMONO
data analysis are identified.

Automatic Tuning of Algorithmic Parameters

Existing literature on the automatic tuning of algorithmic parameters employs different
terminologies with regard to the same concepts, often depending on the context of application.
Hence this first paragraph introduces the semantics behind the terminology as it is used
throughout the following discussion with regard to all presented works, independent of the
terminology employed in the individual paper. By algorithmic parameters the variables
configuring a given algorithm are denoted. These parameters are often referred to as
hyperparameters in the context of machine learning algorithms. They have to be clearly
distinguished from the data to which an algorithm is applied. A set of parameters encompassing
values for all free parameters of an algorithm is called a parameter set, sometimes referred
to as a configuration of the algorithm in the literature. A parameter set yields a certain

3.3. Related Work 23

instance of a given algorithm, enabling it to be applied to its input data. Each parameter can
assume a certain set of values (discrete or continuous), and each such set of values spans one
dimension in the parameter space of the algorithm. Any valid parameter set is a point in
that parameter space. Finding an optimized parameter set for an algorithm is called tuning.
A measure of algorithm performance that is optimized during tuning is called an objective
of that optimization. Running an algorithm for a certain input dataset and parameter set,
followed by measuring an objective is called an evaluation of that objective. For a fixed input
and variable parameter sets, the process of evaluation establishes a mapping between the
parameter space and the objective space, which can have one dimension (single-objective
optimization) or more (multi-objective optimization). In a one-dimensional objective space,
this mapping is referred to as the response surface. Since most of the presented approaches
are designed for single-objective optimization, general discussion uses the singular word
‘objective’, even in contexts where multiple objectives are conceivable.

The methods for tuning algorithmic parameters to be presented now have been divided
into three categories:

1. Model-free methods traverse the parameters space solely by actual evaluations of
the objective to find optimized parameter sets [HHL+09; BSP+02; BYB+10].

2. Meta-modeling methods create a model of the response surface and use it as a proxy
function in traversing parameter space. Predictions by the model can be computed
quickly and can guide the search [BLP10; KKF+11; HHL11; BBB+11; BMT+12].

3. Evolutionary methods maintain parameter sets and their attained objective values
in a population that undergoes simulated evolution to breed new promising parameter
sets [AST09; MMB+14a; MMB+14b].

Model-free methods for parameter tuning attain knowledge about the response surface
solely by actually running the algorithm to be tuned. They do not rely on a model predicting
the objective values for new parameter sets.

ParamILS [HHL+09] is a local search strategy which assumes categorical4 parameters. It
randomly searches the finite set of possible values of a single parameter until the objective to
be optimized improves, and then greedily continues this procedure with the next parameter
until convergence to a local optimum. This local optimum is then perturbed in parameter
space to enable escaping from locality and the procedure is repeated. ParamILS can be used
in optimizing single objectives over categorical parameters and has been successfully applied,
among others, in configuring the CPLEX solver with 63 parameters.

F-Race [BSP+02] is representative of the class of racing approaches [MM97]. It assumes
that a finite set of candidate parameter sets has already been sampled from the parameter
space (or that the parameter space itself is finite). It selects the best-performing parameter
sets from the sample by successively eliminating less promising candidates. The latter are
identified by a Friedman test [Con99], once statistical evidence has been collected for their
significantly worse performance in comparison to the other parameter sets. Evidence is
collected over multiple input datasets, i.e. F-Race furthermore assumes the possibility to
sample an arbitrary number of dataset instances from a distribution that is representative
of the actual datasets to which the algorithm will be applied. Due to the fact that F-Race

4Categorical variables can assume values from a finite set that need not be ordered. An example of such a
set is {red,green,blue}.

24 Chapter 3. The SynOpSis Approach

assumes a finite number of candidate parameter sets, in order to apply it within the PAMONO
scenario, where the parameter space consists of 28 to 31 binary, integer and floating point
parameters, the problem is shifted to finding a set of promising candidates for racing.

Iterated F-Race [BYB+10] is an extended version of F-Race that can be used to address
this issue: It executes F-Race in an iterative fashion, where the racing candidates in each
iteration are sampled from the full parameter space, and sampling is biased towards regions
containing parameters that performed well in previous iterations. Implementing a search
strategy that is guided by previous results takes iterated F-Race conceptually closer to
model-based approaches because known results are used to make forecasts about the behavior
of the objective function over the parameter space. However, the usual notion of model-
based approaches involves the explicit construction of a so-called meta-model, which will be
explained in the following.

Meta-modeling methods, in contrast to model-free methods, do not traverse the param-
eter space by actually running the algorithm for evaluating the objective to be optimized, but
by using a surrogate function that is designed to approximate the objective. This surrogate
function is called the meta-model (or response surface model [JSW98]). Its purpose is to
capture the relation between points in parameter space and the associated objective value
with respect to which the parameters are optimized. In contrast to running the actual
algorithm and obtaining an exact evaluation of the objective, the meta-model is used to
predict the objective value, which is faster than an exact evaluation. Hence the meta-model
can guide the search through parameter space by enabling many objective predictions in a
fast manner, which is used to identify a promising candidate parameter set. Once the most
promising candidate parameter set has been found, the actual algorithm is evaluated with this
parameter set, and the resulting exact objective value is used to update the meta-model. Each
update improves its fit to the actual response surface, the entirety of which remains unknown.
However, the mapping between parameter space and objective values is approximated by this
response surface model. The update procedure makes meta-modeling inherently sequential: In
each iteration, the newly evaluated point in parameter space helps improving the meta-model
by being incorporated as an update. The meta-model-guided optimization procedure is
iterated until a selected stop criterion is fulfilled.

The Sequential Parameter Optimization Toolbox (SPOT) [BLP10] is a meta-modeling
approach using linear regression to model the response surface. Kriging and tree-based
regression [HTF09] are also supported to this end. The authors of SPOT see its main field of
application in tuning the parameters of metaheuristics, e.g. Evolutionary Algorithms (EAs).

Konen et al. [KKF+11] build on SPOT and use it in tuning the parameters of a generic data
mining process template. They compare the results attained by SPOT to those by three other
optimization methods: Latin Hypercube Design (LHD) [MBC79] is considered as a baseline
comparison. Since the parameters of the data mining template are numeric, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [Kel99] algorithm5 is applied as a representative of local
non-evolutionary numerical optimization. The more recent Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [Han06] is used as the third competitor, representing non-
local evolutionary numerical optimization. The benchmarks examined with the data mining
template are the 2007 and 2010 editions of the Data Mining Cup [Pru15] and appAcid

5Among other optimization algorithms, BFGS is briefly summarized in Section 3.7.1.

3.3. Related Work 25

[WGS+10]. Results are that SPOT ranks best in tuning the template, followed by the best
LHD results, while average LHD performance is far worse. CMA-ES ranks third, and the
local BFGS strategy is the worst competitor. As a summary, Konen et al. demonstrate the
success of optimization in automatically tuning the parameters of a generic template for data
mining. This relates to the classification subtask in SynOpSis, which is realized similarly.

Hutter, Hoos, and Leyton-Brown [HHL11] propose a meta-modeling approach that uses a
Random Forest regression [Bre01] to model the response surface. Random Forest regression
yields three benefits: Firstly, categorical parameters are supported in addition to numerical
parameters. Secondly it can integrate multiple dataset instances into one meta-model by
incorporating instance-related features to the forest. Thirdly, Random Forest regression
provides not only an estimate of the objective for a given parameter set (mean value over the
regression tree outputs), but also the uncertainty of this estimate (derived from the variance
over the regression tree outputs). This information is exploited in the search for promising
candidate parameter sets: Candidates are found by maximizing Expected Improvement (EI)
[JSW98] over the incumbent (i.e. the current best) parameter set. EI is high for regions with
good objective values and for regions with high uncertainty. It hence trades off searching in
known good versus unknown regions (exploitation versus exploration), while regions known
to be bad are not examined.

Bergstra et al. [BBB+11] apply meta-modeling in optimizing image classifiers based on
Deep Belief Networks (DBNs) [LEC+07; HOT06]. The approaches proposed in the paper
can handle conditional parameters, i.e. parameters which are only relevant if some other
parameters take certain values. For example, if a boolean parameter toggles execution of a
sub-algorithm, the other parameters of this sub-algorithm are only relevant if its execution
is enabled. One prediction, based on 200 samples in the meta-model, is reported to take
10 s, respectively 150 s, depending on the type of underlying response surface model. For
PAMONO, one actual function evaluation takes on the order of 20 s to 50 s for typical
input sizes, exploiting the parallel processing capabilities of the Graphics Processing Unit
(GPU) [LST+13a]. Hence, predicted function values taking 10 s to 150 s provide no gain.
Furthermore, due to sparsity of good points in parameter space, considerably more than 200
samples are required to obtain a good response surface model. This further increases the
time needed for predictions.

For further reading, Bischl et al. [BMT+12] provide a survey of meta-modeling methods
applied within evolutionary optimization. Besides that, their work presents a method for
assessing the accuracy of a meta-model. Furthermore, meta-model selection and tuning of
the parameters of a meta-model are discussed. This wraps parameter optimization in an
additional meta layer with its own parameters. While this kind of meta layer is not considered
in SynOpSis, model selection and parameter tuning are considered, even though this happens
one layer below. The section named “Common Pitfalls, Recommendations, and Statistical
Properties” is a recommended reading for every layer of statistical modeling and machine
learning in designing a data analysis process.

Evolutionary methods for parameter tuning combine some of the characteristics of
model-free and meta-modeling methods. Nevertheless, they are not a hybridization of
those approaches. Evolutionary methods share the following property with meta-modeling
approaches: Knowledge from previous evaluations of the objective enters into the search
for new promising candidate parameter sets. However, this is realized in a model-free

26 Chapter 3. The SynOpSis Approach

fashion, i.e. no explicit model of the response surface is constructed. Instead, evolutionary
methods simulate the mechanisms driving natural evolution: Parameter sets assume the role
of individuals that compete against each other in terms of objective values. The winners in
this competitive selection process mate and exchange parameters. This is where knowledge
from previous evaluations of the objective enters: Parameter sets that are known to perform
well are recombined to form (hopefully) better parameter sets via crossover. Furthermore,
new individuals can be generated by randomized mutation of parameters, i.e. a parameter
is assigned a new value, randomly drawn from a defined distribution. More information
on evolutionary methods will be given in Section 3.7. In-depth details can be found in the
literature [Deb01; Luk13].

Ansótegui, Sellmann, and Tierney [AST09] address tuning of solvers for the Propositional
Satisfiability Problem (SAT) by means of a Gender-Based Genetic Algorithm (GGA)6. It
divides the population of all individuals into two genders, of which only one gender is subjected
to selection pressure: Only the top x percent of individuals of that so-called competitive
gender are allowed to mate. In the so-called noncompetitive gender, all individuals are
allowed to mate. This is done with a randomly assigned partner from the top x percent
in the competitive gender. Mating is only carried out between different genders, and the
offspring is randomly assigned one gender. The paper empirically shows that making the
genetic algorithm gender-based improves solution quality and reduces the number of necessary
objective evaluations in minimizing three analytical toy functions, as well as in tuning several
SAT solvers.

In their two-part paper, Mukhopadhyay et al. [MMB+14a; MMB+14b] specifically address
data mining algorithms as a field of application for evolutionary methods. Data mining
algorithms often pursue conflicting goals that can be formalized as opposing objectives for
optimization, which is why the paper focuses exclusively on Multi-Objective Evolutionary
Algorithms (MOEAs). While the scope of application of MOEAs in that paper exceeds7

using them for tuning existing algorithms, successful approaches in tuning the parameters of
classification algorithms are surveyed. These include applications with severe class imbalance8,
which benefit particularly from multi-objective optimization because additional objectives
penalizing misclassification of minority class examples can be considered.

Image Processing Pipelines

While the previous paragraphs primarily addressed work related to the Optimization stage in
Figure 3.2, which can be regarded as an outer loop governing offline computation in SynOpSis,
the following paragraphs will cover work related to the inner components of that loop, i.e.
to the algorithms to be tuned. As according to the previous sections, the main algorithmic
components requiring tuning are a pattern detector, finding candidate locations for objects of

6Genetic algorithms are the most common kind of evolutionary methods. Variables to be optimized are
represented as genes in a simulated process of evolution [Deb01].

7The literature surveyed by Mukhopadhyay et al. covers using MOEAs for feature selection and classification
(part 1 of the paper [MMB+14a]) as well as for clustering, association rule mining and further data mining
problems (part 2 of the paper [MMB+14b]).

8A classification problem is considered imbalanced, if one of the classes is severely outnumbered by another
class. This not only causes problems for most learning algorithms but also deteriorates the usefulness of
frequently employed performance metrics such as Accuracy. For further information on these issues, cf.
Section 6.3, as well as [HG09] and the references therein.

3.3. Related Work 27

interest in the input images, and a pattern classifier, sorting out spurious detector responses.
One or both of these components frequently occur as parts of image processing pipelines.
Many image processing pipelines fulfilling tasks similar to PAMONO data analysis are found
in the following fields:

1. Cell detection is the task of finding image pixels that belong to biological cells. This
task has been tackled for a variety of microscopic modalities and data dimensions
[HBR+08; HBR+12; PKC09; YBC+10; ALN+12; WHS+12].

2. Particle detection on the micrometer- and nanometer scales is a more general
task, where the objects of interest are not limited to biological cells. However, many
approaches in this field aim at detection of constituent parts of such cells, i.e. even
smaller entities are searched. Due to the resolution limit [Abb73] as discussed in
Section 2.1, this often boils down to finding blob-like patterns or other approximations
of the Point Spread Function (PSF) [NW10] of the optical system [TRS+02; Oli02;
ZFS+07; SLN+09; JZK+07].

3. Other image processing applications related to SynOpSis tackle detection of objects
on larger scales, e.g. tumors [MSB+13] or galaxies and stars [JT81; MSB95].

Hence the following discussion is divided into these three parts. The uniting characteristic
of the data is that objects of interest often cover only a few pixels and exhibit a very low
Signal-to-Noise Ratio (SNR).

Cell detection makes up a large part of the related work concerning image processing
pipelines. It relates to the field of cell biology, and like PAMONO data analysis, its applications
demand for automatic processing of microscopy images because manual evaluation of acquired
data becomes an increasingly severe bottleneck, impeding large-scale experiments. Different
modalities of cell microscopy and differing goals of analysis spawned a very diverse landscape
of methods for solving the individual analysis problems [WHS+12]. A selection of these
methods will be presented now, with a focus on how detection and, if given, classification are
realized by each one.

Han et al. [HBR+08] divide the task of distinguishing multiple classes of cells in histological
slices into detection via watershed segmentation [VS91] and classification via machine learning:
Several weak Haar-based classifiers [VJ01] are cascaded via boosting [HTF09] to build one
strong classifier. The individual classifiers are supervised, and a large amount of training data
(about 500 to 1300 examples per class) must be manually segmented in order to obtain a good
boosted classifier. The method shares with SynOpSis the use of separate images for training,
validation and testing, to be described in the context of model selection and performance
estimation, cf. Section 3.9. In contrast to SynOpSis, the images used for training are not
synthetic and must hence be manually annotated with ground truth information.

Later [HBR+12], Han et al. moved from the cascaded Haar ensemble to Support Vector
Machine (SVM) classification [MMR+01] using Laplace edge features [RW95]. The approach
is reported to generalize well over cell type, cell scale and histological staining technique.
Detection is realized by the classifier: A sliding window is used to cut out candidate regions
from the input images and the SVM classifier predicts, whether the region corresponds to
a cell or not. The SVM is optimized by conducting a grid search over its misclassification
cost C and the γ parameter in the employed Radial Basis Function (RBF) kernel. The paper
mourns the lack of a systematic approach to configure algorithmic parameters beyond those of

28 Chapter 3. The SynOpSis Approach

the SVM, hence connecting it to SynOpSis which is proposed as such a systematic approach
to fill that gap.

Pan, Kanade, and Chen [PKC09] present a method that shares with SynOpSis the division
into detection and classification. Detection is realized in three steps: Firstly, local fluctuation
energy of the image is computed as summed Laplacian filter responses at different scales
and orientations, and candidate regions are obtained where this energy exceeds a certain
threshold determined from training data. Secondly, the original input image is masked
with the regions from the first step, and among the remaining pixels, local minima9 are
determined as candidate cell points. Thirdly, point locations are refined in a procedure similar
to mean-shift [CM02], to make them coincident with perceived cell centers. After detection,
the points are classified on the basis of, amongst others, Histogram of Oriented Gradients
(HOG) features [DT05]. An SVM classifier [MMR+01] with RBF kernel is used to distinguish
points located within cells from those located on image background. The overall approach
is claimed to generalize well over different datasets (e.g. different cell types or modalities
of microscopy) without the need for tuning algorithmic parameters. However, it requires a
complete manual segmentation as training data for each type of dataset.

Yin et al. [YBC+10] classify cell images acquired via phase contrast microscopy and
differential interference contrast microscopy on the pixel level. Each pixel is classified by a
bag of local Bayesian classifiers, and the final decision is computed by a mixture-of-experts
model, that aggregates classifier votes with weighting functions depending on the inputs to be
classified, hence allowing to define which classifier is the more dominant expert in which part
of the input space [JJN+91]. Making classifier weights in ensemble aggregation depend on
the input data to be classified contrasts with boosting approaches [FS97; JZK+07; HBR+08]
where the weight of a classifier depends on its performance on the training data. The local
expert classifiers in the approach by Yin et al. are computed as follows: For each feature (e.g.
intensity, gradient on multiple scales), a clustering of local feature histograms from random
positions in the image is computed. Then one Bayesian expert classifier is formed from each
found cluster center. Priors and likelihoods can be inferred from the training data, and the
posteriors can be formed using Bayes’ rule. After training, classification takes 50 s for a
1.4 Mpx image, ruling out this approach for real-time application in the PAMONO scenario.

Arteta et al. [ALN+12] detect cell region candidates via Maximally Stable Extremal
Regions (MSER) [MCU+04]. Detected regions are classified by a structured SVM [THJ+04]
rewarding a one-to-one correspondence of detected regions to the dot annotation supplied
by the user as training data. The SVM works on 92-dimensional feature vectors containing
histograms of intensity and intensity difference between the border of a region and its
surroundings, a shape descriptor of the region and its area. While this method is demonstrated
to generalize over three modalities of microscopy, it takes 30 seconds for processing a
400 px × 400 px image on an Intel® Core™ i7 CPU and is hence not applicable if real-time
data analysis is desired.

Wienert et al. [WHS+12] aim at minimizing the amount of a priori information necessary
for an analysis, for the sake of reducing bias towards cells with “regular” morphology. The
main benefit is that cells with more irregular morphological features, e.g. malignant cells
in tumors, can be detected more reliably. The method employs closed-contour-tracing
and subsequent classification of contour-related features. In order to classify irregularly

9The cells considered in [PKC09] are darker than the background.

3.3. Related Work 29

shaped cells correctly, the utilized features are invariant to the morphological variations in
question. Nevertheless, the final processing step, separating cell nuclei from background
detector responses, relies on features caused by the Haematoxylin staining of the cell nuclei,
thus restricting generality of the method. Processing time for a 400 px × 400 px image on a
“standard PC” is reported to be 0.39 s, which is ≈ 77 times faster than [ALN+12] but still too
slow for processing PAMONO data in real-time.

Particle detection on the micrometer- and nanometer scales is another field that
provides work related to SynOpSis. Most papers in this field are closely related to cell
detection because components of cells in differing modalities of microscopy are the objects of
interest. The difference, however, to detection of whole cells, is that in many cases, features
like textures and contours can not be successfully applied, due to the very low size of the
particles of interest. This small size in combination with the resolution limit [Abb73] discussed
in Section 2.1, turns most of these detection tasks into finding blob-like patterns or other
approximations of the Point Spread Function (PSF) [NW10] of the optical system. Hence, in
the following discussion, the particles to be detected will be referred to simply as blobs, i.e.
by their appearance in the images. A further common characteristic in this context is the
very low Signal-to-Noise Ratio (SNR) in the input [JZK+07].

Thomann et al. [TRS+02] tackle a problem demonstrating many of these aspects: The
task is fluorescent tag detection in 3-D super-resolution microscopy. The blobs to be found
are very small (e.g. 7 px × 7 px) compared to the image resolution and their appearance is
dominated by the PSF of the optical system, approximated by a Gaussian, while the SNR is
low. Detection of candidate blobs is carried out by thresholding a feature map integrating
intensity and curvature information, cf. also Section 6.2. Super-resolution localization is
obtained by fitting a Gaussian mixture model to the detected blobs, reflecting the prior
knowledge that the signal consists of superimposed variants of the Gaussian-like PSF of the
optical system.

Olivo-Marin [Oli02] also works on fluorescence images and follows the goal of finding small,
bright blobs. His method uses the à trous wavelet transform [Mal99] of an input image, to
represent it in an undecimated multiscale space. In that space, denoising and blob detection
are conducted. For detection, the detail coefficient planes are multiplied, and local maxima
are searched in the product. This search exploits the result that local maxima that are due
to additive Gaussian white noise do not propagate across detail coefficient planes, while local
maxima that are due to actual discontinuities in the image (e.g. edges or blobs) do [MZ92;
JS97; JB99]. However, this method was reported to perform worst, by a large margin, on
low SNRs images, in the 2009 blob detection survey by Smal et al. [SLN+09], which will be
discussed later in this paragraph.

Zhang et al. [ZFS+07] propose a method that can also be used to detect blobs in
fluorescence microscopy, but their focus lies on a denoising method to facilitate this detection.
Their denoising strategy explicitly addresses the Mixed-Poisson-Gaussian (MPG) nature of
fluorescence microscopy, which results from a mixture of the Poisson noise (shot noise) due
to photon count statistics [BB00] and the Gaussian noise due to sensor readout [FM06]. The
MPG nature of an input image is alleviated by transforming it to a near Gaussian process
using a multiscale Variance Stabilizing Transform (VST), which extends the Generalized
Anscombe Transform (GAT) [SMB98] by a post-processing with undecimated isotropic
wavelets [SMB98]. The “Gaussianized” coefficients are then denoised by increasing their

30 Chapter 3. The SynOpSis Approach

sparsity using an iterative optimization scheme. Smal et al. [SLN+09] report competitive
results for the detector part of this method which is based on zeroing both, approximation
coefficients and the coefficients deemed insignificant by the denoising step. Computation
times are not reported, but the iterative optimization scheme, involving steepest descent, as
well as forward and backward wavelet transform in each iteration, hints at unsuitability for
real-time applications like PAMONO.

The already mentioned work by Smal et al. [SLN+09] gives a survey on low SNR blob
detection involving, among others, the three previously discussed unsupervised methods
[TRS+02; Oli02; ZFS+07]. Beyond those, the survey also examines approaches involving
supervised machine learning and reveals that these are superior to unsupervised methods if
the SNR is very low. This advantage, however, decreases with increasing SNR. The examined
machine learning methods are the work by Jiang et al. [JZK+07] and a variant of that, using
Linear Discriminant Analysis (LDA) [HTF09] as the classifier.

In the original version, Jiang et al. [JZK+07] use Adaptive Boosting (AdaBoost) [FS97]
as the classifier. This is done in the context of detecting clathrin-coated pits within cells.
Just like in the previously discussed cell detection algorithm by Han et al. [HBR+08], the
employed features are based on the seminal work by Viola and Jones, originally developed for
face detection [VJ01]. Jiang et al. argue that intensity alone can not capture the information
necessary to successfully classify the very small blobs to be detected, and they see the
advantage of Haar features in their ability to simultaneously capture information about
intensity, shape and scale of the underlying objects. The good performance of this method,
especially in comparison to unsupervised methods in the presence of low SNR, as reported in
[SLN+09], makes supervised machine learning an interesting approach for PAMONO data
analysis that will be investigated in Chapter 6.

Other image processing applications that are related to SynOpSis deal with objects
of interest that reside on larger scales. A selection of methods applied in these contexts will
be given now.

The first application is tumor detection in Automated Whole Breast Ultrasound (ABUS)
images. To this end, Moon et al. [MSB+13] propose a multiscale blob detection based on
analyzing the Hessian of the ABUS images. Hence, similarly to [TRS+02], local curvature of
intensity is used as a measure of “blobness”. Before Hessian approximation, a speckle noise
reduction is carried out to address artifacts inherent to the ABUS method. Like SynOpSis,
this approach firstly aims at not missing any pattern that is a candidate for an object of
interest (tumor), followed by classifying the candidates into true and false positive detector
responses (TPs and FPs). In candidate detection, all tumors are detected (Recall = 1) at
the cost of many10 FPs. Then a threshold on a logistic regression [HTF09] estimate of
tumor likelihood is applied to classify the candidates, trading off Recall for fewer FPs11 in
a ten-fold cross-validation. The employed features in this classification were derived from
the Hessian-based blobness measure used in detection, complemented with features of local
intensity distribution and morphology. Computation time is reported to be 13 min per image
and thus too slow for real-time analysis. Calculation of the blobness feature can be accelerated
by exploiting the parallel processing capabilities of GPUs.

10An average of 1044.89 detector responses versus a maximum of 3 tumors per dataset is reported.
11The number of FPs varies, depending on the achieved value of Recall, but it is small enough for manual

post-classification in the context of Computer-Aided Detection (CADe) by medical experts.

3.3. Related Work 31

While finding tumors already is a task residing on a larger scale than identifying cells or
their constituents, the superordinate problem of automatically detecting objects of interest
with a certain appearance in digital images not only arises in medical applications, but also in
very different scientific disciplines operating on yet considerably larger scales, e.g. astronomy.
Despite the large difference in scale between the previously discussed fields of application
and astronomy, the problem to be solved still fits into the abstract task description from
Section 3.1: Objects with defined appearances, that often cover only a few image pixels,
are to be detected and classified, while their intensity is rather small in comparison to
background noise (low SNR). Most of these aspects can immediately be seen when looking at
the title of the work by Jarvis and Tyson [JT81]: Faint Object Classification and Analysis
System (FOCAS). The input of FOCAS are digitized astronomical plates, and the task
to be solved is computing histograms that count the number of stellar objects for ranges
of intensity magnitudes. This task involves a classification subtask because stars have to
be distinguished from galaxies of the same intensity magnitude. Furthermore, these two
classes of interest have to be separated from spurious noise detections due to dust, lint and
adverse properties of plate emulsion. Separating these three classes becomes more difficult
for decreasing magnitudes of the galaxies and stars. FOCAS, like most previously discussed
methods for cell and particle detection, shares with SynOpSis the division of the task into
detection and classification. Detection is carried out by thresholding a filtered version of the
original input image. Classification employs as features the moments of intensity and shape
[Hu62] of the detected object candidates, along with template matching-based and other
application-specific features. An interactive training procedure of a preliminary classifier is
carried out by visually inspecting the scatter plot matrix of the seven-dimensional feature
space, and manually picking separating curves for each combination of two distinct features,
which are then assembled to form a separating hypersurface in the original feature space.
Then a clustering is carried out in feature space on the unclassified detected points, and the
preliminary classifier serves to determine which cluster centers correspond to which class.
Hyperellipsoids are then fitted around the clusters, the union of which defines the final
decision hypersurface. This process has to be done separately for each astronomical plate.
While being outdated and rather empirical, this method very well illustrates the need for
automation and systematization of image processing and object classification processes, as
covered by SynOpSis.

Murtagh, Starck, and Bijaoui [MSB95] present a more general framework for astronomical
image processing that uses undecimated wavelets to solve a variety of tasks in a multiresolution
setting. Among these tasks are image denoising, restoration, compression and object detection,
all of which use the results of an à trous wavelet transform [Mal99] of the input image. The
denoising part can be regarded as a methodological ancestor of [ZFS+07] which was already
presented in the context of the micrometer- and nanometer scales: A VST is used to
“Gaussianize” the MPG process provided by the image sensor, and subsequently wavelet
coefficients that are deemed noise-related are zeroed in an iterative denoising scheme. The
detection process, on the other hand, can be regarded as a methodological ancestor of [Oli02]
because it examines the multiresolution representation of an input image in a scale-by-scale
manner: Each scale deeming a pixel significant votes for the pixel containing an object of
interest. Scale-weighted summation of the per-pixel votes, followed by thresholding, yields
a binary mask of candidate object pixels. This mask is then post-processed by applying
morphological opening [GW07] two times to remove small ridges. By being closely related to

32 Chapter 3. The SynOpSis Approach

two works already presented in the context of detecting objects on the micro- and nanometer
scales, the astronomical image processing framework by Murtagh, Starck, and Bijaoui
illustrates the success of methods in denoising and detection across application boundaries
and, more importantly, across a large difference in scale of the objects of interest.

SynOpSis and PAMONO in the Context of This Related Work

Putting SynOpSis and PAMONO into the context of the presented related work can be divided
into the same two aspects as the presentation in this section. SynOpSis as a method belongs
into the context of Automatic Tuning of Algorithmic Parameters, while PAMONO as
the application case belongs to the context of Image Processing Pipelines, containing
the algorithms, the parameters of which are tuned by SynOpSis.

This thesis applies parameter optimization to an image processing pipeline for PAMONO
data analysis, used as an example. In the related work presented in this section, parameter
optimization was demonstrated to be successful in application fields like optimizing meta-
heuristics, solvers for NP-complete problems like SAT, and for data mining. Image processing
pipelines frequently exhibit numerous parameters that heavily influence the quality of the
attained processing results. A lack of automatic and systematic tuning procedures for these
parameters was identified, the resolution of which was considered a desirable goal [HBR+12].
The contributions of this thesis can be divided into two central aspects: Firstly, the thesis
combines automatic parameter optimization with a parametric image processing pipeline
and demonstrates the success of applying the former to configure the latter. Secondly, it
devises that image processing pipeline, which is the first analysis process to successfully
analyze PAMONO sensor data with object sizes down to 100 nm. By doing so, the thesis
alleviates two major bottlenecks in the practical application of the PAMONO technique:
The first bottleneck is manual analysis of several thousands of images per measurement,
impeding large-scale studies and introducing subjectivity. This bottleneck is targeted by
the automatic image processing pipeline, which gives rise to the second bottleneck: The
pipeline has many algorithmic parameters enabling its adaptation to the variable physical
parameters of the sensor prototype. Manually finding suitable values for the algorithmic
parameters is still subjective, and due to the large parameter space it can become even more
tedious than manual data analysis. SynOpSis targets this second bottleneck by automatic
parameter optimization. With that optimization it systematically integrates data synthesis,
pattern detection, pattern classification, model selection and performance estimation in a
unified framework. Regarded abstractly, this framework reflects the commonalities of the
class of tasks characterized in Section 3.1. Adapting SynOpSis to another such task (e.g.
a different imaging modality, input dimension or target object class) means replacing the
individual modules for synthesis, pattern detection and classification, while the framework
can be reused.

The remainder of Chapter 3 describes the exchangeable modules of SynOpSis in an abstract
fashion (Sections 3.4 to 3.6) and gives details on how parameter optimization, model selection
and performance estimation can be conducted, and how the results of these procedures are
applied in analyzing the real sensor input data (Sections 3.7 to 3.10). Chapters 4 to 6 then
develop the concrete realizations of the abstract modules for synthesis, pattern detection and
classification, targeting PAMONO data analysis. While the related work presented in this
section primarily focused on SynOpSis as whole and on a broader context of kindred image

3.4. Synthesis Stage 33

processing pipelines, those chapters provide more specific related work, where the peculiar
subproblems of PAMONO data analysis are tackled.

3.4 Synthesis Stage

Synthesis is the first stage to be executed in SynOpSis, cf. left side of Figure 3.2. It uses
a signal model to generate a synthetic dataset of images for which ground truth pattern
locations and classification are known. Defining a signal model is application-specific: A
concrete example for PAMONO can be found in Chapter 4, while in the following, the
properties required for such a model, and the role of synthesis in SynOpSis are depicted
abstractly.

3.4.1 Signal Model

The purpose of the signal model in SynOpSis is generating synthetic images for which ground
truth pattern locations and classification are known. This ground truth is used to define
automatically evaluable objective functions measuring the quality of data analysis results.
Having a method to assess analysis quality is equivalent to having a method to assess the
quality of the algorithmic parameters employed in the analysis. This in turn enables automatic
determination of suitable algorithmic parameters by optimizing the objective functions with
respect to them.

A synthetic signal can, by construction, easily be annotated with ground truth information
because the target patterns12 are created by the model. The key requirement for the signal
model is that it must mimic the real sensor data to be analyzed in such a way that processing
parameters that work well on the synthetic images also work well on the real data, and
furthermore, that a classifying model learned from the synthetic images, also classifies the real
patterns well. To indicate this fact, the signal model in Figure 3.2 receives real images recorded
by the sensor as input: It must as accurately as possible mimic the signal properties of the real
sensor data to be analyzed. This goal may e.g. be reached by a physical simulation [MMB+05;
WSP+10] that is based on signal properties found in the real data, or by data-driven synthesis
[Lea06; SSK+13; SLW+14] creating synthetic data from observed real data.

When the physical parameters of the sensor are modified during different experiments
(e.g. in sensor prototype experimentation and development) and if these modifications change
the properties of the recorded real signal, these changed properties must be captured by the
model in order to be adequately reflected within the signal computed in the Synthesis stage.
The signal properties (e.g. noise level, irradiance, focus) of the synthetic signal must be as
close as possible to the real sensor data to be analyzed. This is due to the role of the synthetic
signal in SynOpSis: Optimized parameters for pattern detection, pattern classification and
the predictive model classifying the patterns are derived from it. The better the signal model
mimics the real data, the better these results transfer to the real data.

Applying the signal model forwardly to generate a synthetic, ground truth-annotated
dataset is its primary purpose in the context of SynOpSis. If the employed signal model
has the property of explaining image formation, it may serve a further purpose when the
backward direction of image formation is regarded: The inverse problem of separating the

12In case multiple classes of target patterns are to be distinguished, all these classes must be represented in
the synthetic data.

34 Chapter 3. The SynOpSis Approach

individual components contributing to the overall image can be facilitated by considering the
signal model. For example a separation of the desired signal from noise and artifact signals
may be desired. In such contexts, the signal model may regularize the inversion of the image
formation, as e.g. in constrained least squares filtering [DK77]. More abstractly speaking, the
signal model may also be used to guide image processing.

3.4.2 Synthetic Ground Truth Patterns and Classification

Besides synthetic images, a synthetic dataset must contain ground truth about all information
to be provided by the pattern detector and classifier because that information is needed for
comparison with detector and classifier results within the Optimization stage in Figure 3.2.

For the detector, ground truth locations of all target patterns in the synthetic images must
be known, whereas the locations of non-target patterns need not be specified, but are given
implicitly: Any pattern found by the detector that does not correspond to a ground truth
target pattern must be a non-target pattern, i.e. a spurious detector response. Therefore, all
patterns in the ground truth are target patterns. How the ground truth pattern locations are
represented13 and how detector results are matched14 for determining correspondences to the
ground truth is application-specific, cf. Section 5.8 for a concrete example.

For the classifier, ground truth class labels of the detected patterns are required for
assessing the quality of classification results. The class labels can be transferred from the
ground truth patterns to the detected patterns via correspondence: Any pattern in the ground
truth is a target pattern, and any detected pattern that matches a ground truth pattern is
hence labeled a target pattern15. Any detected pattern not corresponding to a ground truth
pattern is labeled a non-target pattern. Besides being used in measuring classification quality,
the ground truth-labeled detected patterns are furthermore employed in supervised learning
of a predictive model for classifying detected patterns, as discussed abstractly in Section 3.6
and concretely in Chapter 6.

3.5 Pattern Detector

A further essential component in the SynOpSis approach is the pattern detector. The
patterns to be detected in the input images are regions that are candidates for containing
objects of interest. The pattern detector appears twice in Figure 3.2: Firstly, it is used in
the Optimization stage, during the process of finding optimized parameters with respect to
synthetic ground truth-annotated data. Secondly, it is used with the optimized parameters in
the Application stage. Here it produces pattern detection results for the real sensor images
that are input to SynOpSis.

13Possible representations encompass points, points with radii, a segmentation mask, or polygons. Further
representations are conceivable, particularly in application scenarios beyond PAMONO.

14Several definitions of a ‘match’ between a ground truth pattern and a detected pattern are conceivable,
depending on the representation of both and on application requirements. Possible definitions may e.g. measure
point distance, point-to-polygon-incidence, polygon-centroid-to-polygon distance or polygon overlap area. A
concrete example is given in Section 5.8.

15If multiple classes of target patterns have to be distinguished from the non-target patterns and from each
other, the ground truth target patterns need to be labeled accordingly. The application-specific matching
procedure can be used to transfer class labels from the ground truth patterns to the detected patterns to
provide a comparison between ground truth labels and the labels predicted by the classifier. All classes of
target patterns to be distinguished must be represented in the synthetic images.

3.5. Pattern Detector 35

Pattern
Detector

Parameters

Real/Synthetic
Images

Patterns

Figure 3.3: Pattern Detector Input and Output. The pattern detector module of SynOpSis receives
as input data either real images recorded by the sensor or synthetic images generated by a
signal model mimicking the sensor. In addition to the data, its second input is a parameter
set configuring the algorithms constituting the detection process. The output consists of the
patterns that were detected in the input data, using the input parameters.

Depending on the type of images supplied, and the objects of interest to be found, the
concrete implementation of the pattern detector may vary considerably. In the abstract
depiction of SynOpSis, given in this chapter, the pattern detector is hence regarded as
an abstract module that needs to be implemented in a detection-task-specific way, as e.g.
presented in Chapter 5. Only its input and output interface is specified here (Section 3.5.1),
and a choice of possible objectives that can be used in optimizing its application-specific
parameters is presented (Section 3.5.2).

3.5.1 Input and Output

Figure 3.3 repeats the pattern detector from Figure 3.2 and its in- and outputs for convenience.
As can be seen from here, as well as from both instances of the pattern detector in Figure 3.2,
its input consists of the images to be analyzed and the algorithmic parameters configuring it.
Consequently, the pattern detector is assumed to contain at least one parametric algorithm,
otherwise the Optimization stage would be trivial. The number and types of algorithmic
parameters of the pattern detector are very application-specific. Since in SynOpSis the task is
finding target patterns in images, examples of possible parameters are those arising in image
processing, like kernel sizes/shapes for filtering and searching, the choice and parameterization
of denoising methods, or detection thresholds. A set of parameters encompassing values for
all free parameters of the pattern detector is denoted a detector parameter set. Such a
parameter set yields one certain instance/configuration of the pattern detector.

Parameter sets must be clearly distinguished from the data that is input to the pattern
detector. This data consists of the images in which the patterns are to be detected. The
domain of the input images must match that handled by the pattern detector. For example
in PAMONO, the images are from the spatiotemporal domain, i.e. time series of consecutive
images are analyzed.

The output of the pattern detector consists of a set of patterns localizing candidate
regions for objects of interest in the images. These regions can be represented in a multitude
of ways, e.g. points with radii, a segmentation mask, or polygons. The concrete choice of
representation depends on application requirements.

3.5.2 Objectives

Suitable and automatically evaluable objective functions are the key component in using
optimization to automatically configure the parameters of the pattern detector. Such objective

36 Chapter 3. The SynOpSis Approach

TPs

TPs

TPs

TPs
FPs

FNs
TPs

TPs

Figure 3.4: Confusion Matrix of a Detection Task – Illustration. An exemplary PAMONO image
is shown. Patterns found by the detector are indicated by green ellipses. In the top right
corner, three non-target pattern detections can be seen, counting as False Positive (FP) detector
responses in the confusion matrix, cf. Table 3.1. Below that, two target patterns were missed
(no detector responses), resulting in False Negative (FN) entries in the confusion matrix. All
other patterns are target patterns that were correctly detected and hence count as True Positives
(TPs). The case of a True Negative (TN) does not arise in detection because a detector only
yields positive responses.

functions will be presented here. They are used in the Optimization stage in Figure 3.2.
Before these objectives can be defined, the adopted conception of the detection task must be
stated. In the following, the task of detecting patterns in input images is regarded as the
task of identifying salient image regions that are candidates for containing objects of interest.
The detector can only yield positive responses, i.e. detections, cf. green ellipses in Figure 3.4.
Anything not causing a detector response is not represented in the output of the detector. To
determine whether these responses are related to target patterns and hence correct, they have
to be matched to the ground truth, which by Section 3.4.2, contains solely target patterns.
If a ground truth match can be found for a detected pattern, this is a True Positive (TP)
detector response cf. the exemplary PAMONO image in Figure 3.4 (all ellipses marked as
TPs contain a faint blob which is the target in this case because these blobs are indicative of
nano-objects attaching to the surface of the PAMONO sensor). For the current discussion, it
is assumed that the case of multiple detected patterns matching a single ground truth pattern
does not occur. This case is treated extensively later in this section. If no ground truth
match can found for a detected pattern, this is a False Positive (FP) detector response (three
ellipses in the top right of the figure are marked as FPs because they do not contain a blob).
Furthermore, there can be ground truth patterns for which no corresponding detected pattern
exists. Such a situation arises if a ground truth target pattern is missed by the detector and
is thus denoted as a False Negative (FN) (on the right side of the figure there are two blobs
without an ellipse, hence marked as FNs). Note that this negative case does not conflict with
the statement that the detector can only yield positive responses because an FN is not a
detector response and can thus only be determined owing to the ground truth. The case of
True Negatives (TNs) does not exist in detection tasks [WHS+12; SLN+09] because such

3.5. Pattern Detector 37

Table 3.1: Confusion Matrix of a Detection Task. The confusion matrix of a detection task tabulates
the total numbers of TP, FP, FN and TN detection outcomes. A True Positive (TP) is a detector
response that matches with a ground truth pattern, while a False Positive (FP) is a response for
which no matching ground truth pattern exists. A False Negative (FN) is a pattern in the ground
truth for which no detector response exists, and hence an object of interest that has been missed
by the detector. A True Negative (TN) is not defined in this context because it corresponds to
something that has neither been detected, nor marked in the ground truth, and hence can not be
counted, thus TN = 0 [WHS+12; SLN+09]. TPs are the desired responses, while FPs and FNs
are undesired. FPs can be remedied by subsequent classification, while FNs (misses) can not be
recovered.

Ground Truth
Target Non-Target

Detector
Response TP FP
No Response FN TN = 0

an event would neither cause a detector response, nor is it represented in the ground truth,
which by definition consists solely of target pattern locations. TNs do not relate to discrete
events in the analyzed data, so the number of TNs is defined to be zero.

Basics: Confusion Matrix

In order to state these presented cases more formally, and as the basis for defining objective
functions, the concept of a confusion matrix is employed, which is a popular tool in
assessing the quality of machine learning algorithms for classification [Pow11]. Generally,
a confusion matrix tabulates outcomes of classification algorithms, which are often called
predictions and which assign predicted class labels to the examples to be classified. In the
confusion matrix these predictions are contrasted with the actual ground truth class labels
that a perfect classifier would have predicted. The confusion matrix E is a C ×C matrix,
where C ∈ N≥2 is the total number of classes to which the examples to be classified can
belong. Each matrix entry ei,j ∈ N≥0, i, j ∈ {1, . . . ,C}, equals the number of examples that
were predicted to belong to the class named ci, while the ground truth assigns them to the
class named cj . Entries ei,j with i = j count correct predictions, while all other entries count
erroneous predictions. Hence, the confusion matrix can be used to asses classifier quality.

Table 3.1 shows the peculiar confusion matrix of the detection task discussed here. It is a
2 × 2 matrix, due to C = 2 classes: target and non-target. The peculiarity of the confusion
matrix arising in detection is that the entry for TNs is always zero; otherwise it has the
same properties as a confusion matrix from two-class, i.e. binary, classification. Therefore
any measure of binary classification quality that does not divide by TN can be computed to
measure detection quality, cf. Appendix A for examples of such measures.

Automatic optimization of detector parameters in SynOpSis employs such measures as
objectives and hence requires automatic computation of the confusion matrix. As pointed
out, this can be achieved by implementing a matching procedure between detected and
ground truth patterns that suits the application task at hand, cf. Section 5.8 for an example.
Given such a matching procedure, the TPs, FPs and FNs can simply be counted, setting
up the confusion matrix. Therefore, the components required for automatically evaluating

38 Chapter 3. The SynOpSis Approach

the quality of detector parameter sets are present, enabling utilization of these measures as
objective functions during parameter optimization.

Objective 1: Recall

For the sake of brevity, this section lists only the objective functions that were finally applied
in optimizing PAMONO pattern detection. Depending on the application and its requirements,
other objective functions may be advisable, hence Appendix A provides a wider selection of
possible objectives, along with references for further reading. As stated in Section 3.1, the
analysis task is divided into a detection and a classification part. The pattern detector follows
the goal of not missing any target patterns, i.e. it strives to keep the FN entry in the confusion
matrix as small as possible. The reason is that FNs do not result in detector responses and
can thus not be remedied during the subsequent classification process. This goal of high
sensitivity may be pursued at the possible cost of many spurious, i.e. non-target, detector
responses: The FP entry may be large, because FPs can be eliminated by the subsequent
pattern classifier.

As a consequence, choosing Recall as an objective function for parameter optimization is
a natural choice [PKC09]. Recall [HG09] is defined as

Recall = TP
TP + FN

(3.1)

and yields the ratio of target patterns in the ground truth (denominator) that was found by
the detector (numerator). Optimizing for maximized Recall keeps the number of uncorrectable
misses small by penalizing FNs in the denominator. It may result in a large number of FPs
because they are not penalized, thus only high Sensitivity16 is rewarded. In order to avoid
overly sensitive parameters that simply cover the entire image domain with rather random
detector responses, the number of detector responses is allowed to be at most a times the
number of ground truth target patterns. Any parameter set attaining more responses is
discarded. For example in PAMONO a = 5 was chosen, cf. Section 5.8 and Section 7.3.1.
Imposing a threshold on the maximum number of admissible detected patterns can be regarded
as introducing a hard constraint on the minimum required value of Precision = TP

TP+FP . Besides
avoiding overly sensitive parameters, this heuristic can save computational resources because
the number of detected patterns can be determined at low computational cost, whereas
actually computing Recall and Precision involves matching detection results to the ground
truth. As the number of ground truth patterns is constant, matching cost increases linearly
with the number of detections. Thus, the heuristic particularly avoids the more expensive
matching computations involving many detected patterns. Doing so is particularly beneficial
in the Optimization stage because objectives have to be evaluated many times, and parameter
sets may be examined that generate large numbers of detected patterns.

Note that the account of Recall given here does not consider the case where the detector
yields multiple responses to a single target pattern, which is a case that is not reflected in
confusion matrices arising in classification, but that can occur in detection. This case is
treated further below, where Recall is revisited. Before that, the second objective function is
presented because revisiting Recall requires arguments and a definition given in the context
of the second objective.

16Recall is synonymously denoted as Sensitivity.

3.5. Pattern Detector 39

Objective 2: M-Rate

Besides FPs, repeated detections of the same object of interest may pose an issue, as
encountered e.g. by Han et al. [HBR+12] in the application case of detecting cell nuclei
in 2-D images. In PAMONO data analysis, this issue is aggravated by the additional
temporal dimension and the resulting fact that the same target patterns are visible in
multiple subsequent images. Hence avoidance of repeated detections is used as an objective
in PAMONO.

Stated in the terminology employed in this thesis, the case of a repeated detection is
constituted by multiple detector responses matching a single ground truth pattern. This
additional type of spurious detector response is particularly undesirable because it is the
detection of an actual target pattern and hence a TP, adding to the TP entry in the confusion
matrix. Whether a detector response is a repeated or a first detection can only be determined
by matching it to the ground truth, followed by testing whether it matches to a ground truth
pattern that already has a matching partner. The problem is that this information is not
available in the absence of ground truth and hence in analyzing real data. A parameter set
yielding many repeated detections is prone to overestimating the number of target patterns
present in a dataset because each repeated detection is likely to be assigned to the target
pattern class during classification. The reason for this is that a repeated detection is caused
by an actual target pattern, and thus exhibits signal features like a desired first-time detection.
So the classifier can not be expected to sort out repeated detections, but will rather classify
them as target patterns. These are excess patterns which result in an overestimation of the
number of target patterns in the images.

As a conclusion, this issue must be dealt with during optimization. One option to do
so is by rewarding parameter sets that minimize the number of repeated detections. Multi-
Detection-Rate (M-Rate) is proposed as a measure to quantify the ratio of repeated detections
incurred by a parameter set. In PAMONO data analysis it is employed as a second objective
function in optimizing the pattern detector. It is defined as

M-Rate = −1 + TP
T̂P

, (3.2)

where T̂P is the number TP detector responses, excluding secondary and all further repeated
detections. If there are no repeated detections T̂P = TP and thus M-Rate = 0. Note that
because T̂P ≤ TP it holds that M-Rate ∈ R≥0. Besides penalizing repeated detections in
the optimization of the pattern detector, further heuristics can be applied to prevent them.
Such heuristics can e.g. exploit proximity between first-time and repeated detections (cf.
Section 5.6.3 for an example), at the cost of incurring a possible decrease in the capability
to resolve closely neighboring target patterns. Another possible heuristic for this issue was
proposed by Arteta et al. [ALN+12], where a structured Support Vector Machine (SVM)
[THJ+04] is used to classify detected regions, and one-to-one correspondence of these regions
to a ground truth dot annotation is rewarded by an additional term in the loss function of
the structured SVM.

Objective 1 Revisited: Recall

With the issue of repeated detections discussed, and the number T̂P of TPs cleansed from
repeated detections defined, the first objective in optimizing the pattern detector is now

40 Chapter 3. The SynOpSis Approach

revisited. The reason is that defining Recall with respect to the number of TPs has its roots
in the context of classification, where it is the accepted textbook definition. In the context
of detection however, this definition has an adverse effect concerning repeated detections
of the same target pattern: Consider two sets of detector parameters that differ only in
the number of repeated detections they incur. Let TP1 be the number of TPs found by
the first parameter set and TP2 = TP1 +D,D > 0 the analogous number for the second set,
incurring D more repeated detections than the first one. Recall1 and Recall2 as attained by
the two parameter sets are calculated by substituting TP1, respectively TP1 +D for TP in
Equation (3.1). Comparing the results yields that

Recall1 =
TP1

TP1 + FN
< TP1 +D
TP1 +D + FN

= Recall2

for D > 0 ∧ FN > 0. It can be seen that this definition of Recall prefers parameter sets with
more repeated detections over those with fewer. For increasing D and constant FN > 0, Recall
approaches its maximum of 1.

However, it is desirable that Recall in a detection task depends only on the number of
ground truth target patterns that were detected and does not reward repeated detections.
Therefore it is more appropriate to define Recall with respect to the number T̂P of TPs
cleansed from repeated detections. Doing so makes the thus defined version of Recall invariant
to the number of repeated detections, giving the final definition of detector Recall:

Recall = T̂P
T̂P + FN

(3.3)

Note that by this definition, a parameter set that incurs more repeated detections than
another, while everything else is unchanged, attains the same value for Recall and a higher
value for M-Rate and is thus Pareto-dominated17 by the other parameter set, i.e. it performs
worse in at least one objective while not performing better in any other.

Any value of Recall that is computed with respect to the detector in the
course of this thesis uses the definition in Equation (3.3). This includes the
Recall values employed in detector optimization as well as in reporting results.

Note that letting measures of detection quality drive the search for algorithmic parameters
means that the image processing algorithms within the detector adapt to the data in terms
of the best detection-specific image enhancement, not in terms of image restoration.

3.6 Pattern Classifier

In the previous section, a pattern detector was presented along with reasons for using Recall
as one objective function in optimizing that detector: A highly sensitive detection is required
in order to prevent missing any target patterns in the data. This increases the risk of detecting
many non-target patterns, e.g. due to noise or other unwanted artifacts in the input images.
Stated as entries in the confusion matrix of detection from Table 3.1, a high number of FP
detector responses is accepted for the sake of decreasing the number of FNs.

Now the pattern classifier serves to separate the detector responses into target and non-
target patterns, making up for the adverse consequences of highly sensitive detection. For

17The notion of Pareto-dominance is discussed in more detail in Section 3.7.4.

3.6. Pattern Classifier 41

Parameters

Pattern Classifier

Classified
Patterns

Patterns with
Features

Training
Patterns

Learning
Algorithm

Classifying
Model

Apply Model

Learn Model

Classify Input

Figure 3.5: Pattern Classifier Input and Output. The pattern classifier module of SynOpSis receives
detected patterns annotated with feature vectors as input data. In addition to the data, its
second input is a parameter set configuring the employed learning algorithm. This learning
algorithm computes a classifying model from training data with known ground truth class labels
which are available e.g. via synthesis. The classifying model can be regarded as a mapping from
feature space to class label space and is used to assign predicted class labels to the input patterns.
Thus the output of the pattern classifier consists of the input patterns, annotated with predicted
class labels.

this purpose it uses patterns detected in synthetic data with known ground truth labels, to
train a classifying model that predicts whether an input pattern belongs to the target or to
the non-target class. After training, this model can be used to classify the real input data.

As to be described in Section 3.6.1, besides training data, many learning algorithms
require configuration in terms of parameter sets. Careful tuning of these parameter sets can
considerably increase results quality. Like with the detector, parameter tuning is automated
by optimizing suitable objective functions which are presented in Section 3.6.2.

3.6.1 Input and Output

Figure 3.5 shows a detail view of the pattern classifiers appearing in Figure 3.2. Furthermore,
it illustrates the process of machine learning-based classification. The first input of the
pattern classifier is a parameter set configuring the employed learning algorithm. The choice
of learning algorithm determines the number and kinds of these parameters. In SynOpSis,
supervised classification is used. Examples of applicable supervised learning algorithms and
some of their parameters are the number of regarded neighbors in k-Nearest Neighbors (k-NN)
[HTF09], the number of features available for splitting at each node in a Random Forest
[Bre01] or the regularization parameter and choice of kernel function in an SVM [MMR+01].
These algorithms can all be filled in as the learning algorithm in Figure 3.5.

Independent of the concrete learning algorithm chosen for classification, its task is to
compute a classifying model that predicts class labels for observed data examples. A data
example is represented as a feature vector f from a certain feature space. This space can be
mixed, containing continuous and discrete variables. Discrete variables may be from finite
or infinite sets and may be ordered or unordered. Not every classifier supports all types of
variables, thus type conversions like discretization may be necessary. The classifying model
output by the learning algorithm can be represented as a mapping ξ(f) = p from feature

42 Chapter 3. The SynOpSis Approach

space to label space, i.e. p is the label predicted by the classifying model, and p originates
from the set {c1, . . . , cC} of C possible class labels.

In order to compute this classifying model, the learning algorithm needs, besides its
parameters, training data: In supervised learning the training data consists of a set of pairs
(f , t), each containing a feature vector f and its associated ground truth label t ∈ {c1, . . . , cC}.
The number of such pairs is the size of the training dataset. Computing the classifying model
ξ(f) is typically conducted by minimizing a loss function between the predicted labels ξ(f) = p
and the corresponding ground truth labels t over all ground truth-labeled examples (f , t)
used as training data. The classifying model ξ is an abstraction of the training data and a
representation of the information learned from executing the learning algorithm on it. Since
ξ is defined on the entire feature space, it can not only be evaluated for the training example
points but also for any other points in the feature space. Therefore, ξ can be used to compute
predicted class labels p for unseen examples from the same feature space. In Figure 3.5, the
classifying model ξ is applied to the second input of the classifier, consisting of the observed
examples to be classified, which are represented by their feature vectors f . The output of the
classifier is a predicted class label p = ξ(f) for each input example to be classified.

Most learning algorithms are rather generic. Application specifics are located primarily in
feature extraction: The features are designed, aiming at the best possible separation of classes
in feature space; how this goal can be achieved, heavily depends on application context, cf.
Section 6.2.

In SynOpSis, the data examples are feature vectors computed for the responses of the
pattern detector. Such responses can be from one of two classes: The target class18 is for TP
detector responses, whereas the non-target class is for FP detector responses. Training data
with known ground truth class labels for supervised learning is available via synthesis: The
training examples are obtained by running the pattern detector on synthetic images, followed
by matching its responses to the ground truth patterns. Labeling detector results is necessary
because the classifying model must learn to classify the patterns as they are provided by
the detector, as opposed to classifying the patterns as they are represented in the ground
truth, since these representations and appearances might differ considerably. Using training
data gathered from synthetic images renders manual ground truth labeling unnecessary. It is
assumed that the signal model is accurate enough such that a classifying model learned from
the synthetic training data yields a good generalization performance towards real data.

In summary, SynOpSis uses the Synthesis stage to provide the training data for the
pattern classifier in Figure 3.5. The parameters of the employed learning algorithm are
found by the Optimization stage, using the objectives described in the subsequent section.
During this optimization, the input patterns originate from synthetic data as well, to enable
automatic evaluation of the objectives assessing classification quality. In contrast to that, in
the Application stage, the input patterns for the classifier are computed from the real data
to be analyzed. In both cases the output of the classifier consists in annotating the input
patterns with predicted class labels, aimed at separating target from non-target patterns.

Chapter 6 provides details on how the pattern classifier and further associated data
processing are realized for PAMONO data analysis, including the employed application-
specific features in Section 6.2.

18In case multiple types of objects of interest are to be distinguished, there can be more than one target
class label. Not all learning algorithms and performance measures support the multi-class case.

3.6. Pattern Classifier 43

Target Pattern

(a) TP

X
Target Pattern

(b) FN

X
Non-target Pattern

(c) TN

Non-target Pattern

(d) FP

Figure 3.6: Confusion Matrix of a Two-Class Classification Task – Illustration. Exemplary PA-
MONO data is shown to illustrate classification successes and errors. Detector outputs are
indicated by green color (ellipses), while classifier outputs are indicated by red color (checkmarks
and crosses). The classifier receives patterns found by the detector as inputs (ellipses). As
output, the classifier predicts, whether they belong to the target class (checkmark) or to the
non-target class (cross). True Positive (TP) detector responses relate to target patterns (a)–(b).
Their classification can either be correct, constituting a TP of classification (a) or incorrect,
constituting a False Negative (FN) (b). Analogously, False Positive (FP) detector responses relate
to non-target patterns (c)–(d). Their correct classification constitutes a TN of classification (c),
whereas their incorrect classification constitutes a False Positive (FP) (d).

3.6.2 Objectives

Besides being used in the production of ground truth-annotated training data, synthesis is
also used in optimizing the parameter set of the learning algorithm in the pattern classifier:
Like with the pattern detector, the Optimization stage in Figure 3.2 finds suitable values for
the parameter set of the learning algorithm by optimizing automatically evaluable measures
of classification quality. These measures are used as objective functions with respect to which
the parameters are optimized. Therefore, the parameters of the learning algorithm can be
tuned automatically.

Confusion Matrix of a Two-Class Classification Task

As with the detector in Section 3.5.2, the objective functions are defined using the entries of
a 2 × 2 confusion matrix. These entries are visualized in Figure 3.6, illustrating classification
successes and errors with respect to exemplary PAMONO data: The patterns provided by the
detector are marked as green ellipses. Based on the features of each pattern, the classifying
model makes predictions of class labels, indicated as red checkmarks and crosses, respectively.
Patterns predicted to belong to the target class are indicated by a red checkmark; those
predicted to belong to the non-target class are indicated by a red cross. Ground truth class
labels are provided as text. There are four cases: Target patterns, shown in (a)–(b), can either
be predicted correctly, constituting a TP of classification (a), or incorrectly, constituting an
FN (b). These are the two cases relating to TP detector responses. Analogously, non-target
patterns, shown in (c)–(d), can either be predicted correctly, constituting a TN of classification
(c), or incorrectly, constituting an FP (d). These are the two cases relating to FP detector
responses.

Table 3.2 shows the corresponding confusion matrix of the pattern classifier. The classifier
receives all detector responses as inputs, i.e. its TPs and FPs because detection knows only
positive responses. Classification means separating these two classes, hence they become

44 Chapter 3. The SynOpSis Approach

Table 3.2: Confusion Matrix of a Two-Class Classification Task. The input of the classifier are all
detector responses, i.e. its True Positives (TPs) and False Positives (FPs) because detection knows
only positive responses. Classification means separating these two classes: The detector’s TPs
correspond to target patterns and its FPs to non-target patterns. The detector’s TPs become the
positive ground truth class of classification (left column). They can either be classified correctly
(TP classifier prediction) or incorrectly (False Negative (FN) classifier prediction). The detector’s
FPs become the negative ground truth class of classification (right column). They can either
be classified correctly (True Negative (TN) classifier prediction) or incorrectly (FP classifier
prediction).

Ground Truth
Positive (TPs of detector) Negative (FPs of detector)

Classifier
Positive TP FP
Negative FN TN

the ground truth labels, listed as column headings in the matrix. The TPs of the detector
become the ground truth positive class of classification (left column). If the classifier predicts
such an example positively, it counts in the TP entry, otherwise it counts as FN because a
target pattern was predicted as non-target by the classifier. The FPs of the detector become
the ground truth negative class of classification (right column). If the classifier predicts such
an example positively, it counts in the FP entry because a non-target pattern was predicted
as target, otherwise it counts as a TN.

Note that it is vital to strictly distinguish between the confusion matrix of the detector
and that of the classifier: Even though the entries have the same names, they characterize
results from very different processing stages. Defining the objective functions for classification,
which is done now, always refers to the quantities in the confusion matrix of classification.

For brevity, the following paragraphs discuss only the measures used as objectives in
optimizing PAMONO pattern classification. Appendix A gives a selection of further objectives,
suitable for other applications. In addition to that, Sokolova and Lapalme [SL09] provide an
overview of performance measures for binary and multi-class classification tasks.

Objective 1: Classifier Recall

The first objective with respect to which classifier parameters are optimized was also used in
optimizing the detector: Recall [HG09], which is defined as

Recall = TP
TP + FN

. (3.4)

The difference between this definition and detector Recall is that classifier Recall refers
to the entries of the classifier confusion matrix in Table 3.2. Optimizing the classifier for
Recall is beneficial because the goal of not missing any target patterns in the data also
exists in classification. However, the reason for having a classifier in SynOpSis was to use
it for separating target from non-target patterns, and optimizing it solely for Recall does
not promote classifier parameters that are good at achieving this goal. Therefore, Recall is
complemented with another objective doing exactly that.

3.6. Pattern Classifier 45

Objective 2: Classifier Precision

Precision [Pow11] measures the ratio of patterns correctly predicted to be target patterns
among all patterns predicted to be target patterns:

Precision = TP
TP + FP

. (3.5)

Hence optimizing Precision rewards decreasing the number of FPs and serves as a comple-
mentary “force” to detector and classifier Recall: Classifiers with high values for Precision
are more likely to label non-target patterns as negatives because this ability is measured by
Precision.

Note that in the given scenario of post-detection classification, penalizing a high number of
FPs is to be preferred over rewarding a high number of TNs. The reason is that if classification
serves to sort out the FPs of detection, TNs are not relevant: The goal is to attain as many
TPs as possible, while avoiding errors, i.e. FPs and FNs. TNs in classification are errors
in detection and as such they should not be rewarded by the objectives to be optimized:
Parameter sets that produce more TNs, while all other entries of the confusion matrix remain
unchanged are not better than parameter sets producing fewer TNs. Parameter set quality is
invariant to the number of attained TNs.

Precision and Recall in Conjunction

Optimizing the classifier simultaneously for Precision and Recall captures exactly the three
relevant entries from the confusion matrix in Table 3.2. TPs are rewarded, while FPs (type I
errors) and FNs (type II errors) are penalized with equal weight. Optimizing both objectives
simultaneously seeks to attain high values in both, hence avoiding the trivial extremes:
Recall = 1 can trivially be achieved by a classifier always predicting the positive class, but
results in poor Precision if there are many examples in the negative class. Conversely, a
classifier that finds at least one TP and predicts all other examples to belong to the negative
class achieves Precision = 1 but incurs poor values for Recall if there are many examples in
the positive class. An advantage of simultaneously optimizing multiple objectives is that
good values in one objective can not “remedy” bad values in other objectives. The latter is
typically a problem when only a single composite objective is optimized, that is computed as
a weighted sum of several original objectives.

A possible alternative if single-objective optimization is demanded is Area under the
ROC Curve (AUC) [Faw06]. AUC is defined as the integral of the Receiver Operating
Characteristic (ROC) curve, the computation of which requires a classifier that yields not only
a binary classification, but also a measure of confidence in that classification. Details on the
computation of ROC/AUC and further possible objective functions for classifier optimization
are given in Appendix A. If single-objective optimization is desired but the classifier does
not provide confidence values, another possible alternative is using Fβ score [Chi92] as the
objective, which is also defined in Appendix A. Fβ score is the weighted harmonic mean
of Precision and Recall and allows to control the relative importance of both via the free
parameter β. By being derived from Precision and Recall, Fβ score is invariant to the number
of TNs. In SynOpSis, aggregate objectives like AUC and Fβ score enabling single-objective
classifier optimization are not considered because the necessity of also optimizing the detector
makes the task an inherently multi-objective one. However, a different approach, using

46 Chapter 3. The SynOpSis Approach

desirability functions to enable single-objective optimization in SynOpSis, is described in
Section 3.8. The advantages of this approach are that it can aggregate over detector and
classifier objectives, while integrating expert preferences and demanding for good values in
every constituent objective.

Reducing Undue Optimism in Objective Values

In the Optimization stage in Figure 3.2, the pattern classifier and the evaluation of its
objectives are run in a K-fold cross-validation [Koh95] on the synthetic input (cross-validation
is neither shown in Figure 3.2 nor 3.5 to avoid cluttering). This means that the synthetic input
is divided into K disjoint subsets of approximately equal size. A classifying model is trained
using the union of K−1 such subsets of detected patterns as training data. This model is used
to classify the patterns in the remaining subset, and objectives are evaluated on the obtained
classification. This is repeated K times, until every subset has been classified once, and
objectives are averaged over these K folds. Consequently, the scheme in Figure 3.5 and the
evaluation of objectives are run K times. Computing objectives in a cross-validation avoids
optimism in the reported objective values, which would otherwise be caused by overfitting, if
objectives were evaluated on the same data that was used for training. Cross-validation and
its merit in parameter tuning is explained in more detail in the context of model selection
and performance estimation. Theory behind both topics is provided in Section 3.9, while
the concrete setting used in PAMONO data analysis is part of the experimental setup, and
thus given in Section 7.3.4. Computation of the final model used in the Application stage
of Figure 3.2 depends on the setting described in that latter section and is thus detailed in
Section 7.3.5.

3.7 Optimization Stage

Manual tuning of algorithmic parameters to make them suit a given problem instance has
been called “more of an art than a science” by Bergstra et al. [BBB+11]. They furthermore
state that recent improvements of results for image classification benchmarks are often due
to finding better parameters for existing approaches, rather than being due to better new
approaches. These reasons make automatic tuning of algorithmic parameters a desirable
goal. Furthermore, in the context of PAMONO data analysis, having an automatic procedure
for determining algorithmic parameters bears huge practical benefits because lab workers
using the PAMONO sensor are no longer required to possess extensive knowledge of how to
configure the algorithms involved in data analysis. Instead of conducting tedious manual
search in a high dimensional parameter space, they can focus on their actual tasks.

In the SynOpSis approach, automatic parameter tuning is realized in the Optimization
stage, cf. top right part of Figure 3.2. The parameter space of the optimization problem is
spanned by the computational parameters of the algorithms constituting the detector and
classifier (the parameters for PAMONO are listed in Sections 5.7 and 6.8). Suitable parameters
for both these modules are found by optimizing a number of objective functions with respect to
those parameters (the objectives for PAMONO are listed, and their computation is explained
in Sections 3.5.2 and 3.6.2). This process automatically adapts them to changing physical
parameters in a sensor setup.

3.7. Optimization Stage 47

The remainder of this section is organized as follows: Section 3.7.1 presents related work on
optimization which can be used in implementing the Optimization stage in SynOpSis. Among
the algorithms sketched here, Section 3.7.2 identifies Multi-Objective Genetic Algorithms
(MOGAs) as a suitable choice for optimizing PAMONO data analysis. Subsequently, this class
of algorithms is briefly sketched, while introducing the necessary terminology: Section 3.7.3
gives a short introduction to genetic algorithms in general, while Section 3.7.4 covers the
multi-objective case. Section 3.7.5 concludes the general part by summarizing Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) as a successful representative of the class of MOGAs
and giving the rationale why it was chosen in implementing the Optimization stage. Finally,
Section 3.7.6 describes two different fashions in which SynOpSis can be optimized: a sequential
and a global fashion. Note that Sections 3.7.3 to 3.7.6 are prerequisites for the depiction of
the overall genetic algorithm setup used for PAMONO data analysis, which is given as part
of the experiment description in Section 7.3.2.

3.7.1 Related Work

Numerous techniques for the optimization of objective functions have been proposed over
the last decades. Some of these techniques date back to the 1960s and earlier and are still
successfully applied today. A small selection of these techniques, providing an overview, is
listed here.

• Brute force approaches can be applied if the parameter space is very small or objective
function evaluations are very fast/cheap. They work by simply enumerating a large
number of parameter sets and evaluating the objectives. Two popular brute force
approaches are grid search [BB12] and Latin Hypercube Design (LHD) [MBC79].

• The method of steepest descent [Kel99] requires (an approximation of) the gradient
of the objective function to be optimized. It iteratively determines new parameter sets
by stepping through parameter space in the direction of the negative gradient, i.e. the
direction of steepest descent (in case of minimization). Step lengths must be chosen
carefully in each iteration.

• Newton’s method and its offspring like the Gauß-Newton method or quasi-
Newton methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS) (all of these
methods are described in [NW06]) analytically optimize local quadratic model functions
obtained by second-order Taylor expansion around iterated expansion points. The
minimizer determines the Gauß-Newton step through parameter space, and after taking
that step, the method is iterated. The listed methods differ mainly in whether and how
they approximate the Hessian matrix in the local quadratic model. Again, step lengths
must be chosen carefully in each iteration. Another hazard arises by the fact that in
regions that are far from local minimizers, the Newton-steps can not be guaranteed to
improve the objective.

• The Levenberg-Marquardt algorithm [Mar63] addresses this issue by continuously
blending between Gauß-Newton and steepest descent steps, depending on estimated
proximity to a local minimizer: When closer to a minimizer, the Levenberg-Marquardt
step becomes more similar to the Gauß-Newton step because here Gauß-Newton con-
verges faster than steepest descent. When further away, the Levenberg-Marquardt step
becomes more similar to the steepest descent step because unlike the Gauß-Newton
step, it is guaranteed to improve the objective.

48 Chapter 3. The SynOpSis Approach

• In contrast to the previous three methods, the Nelder-Mead algorithm [NM65]
requires no derivatives of the objective function. It is the nonlinear generalization of
the linear simplex algorithm [Dan98]. For initialization in a d-dimensional parameter
space, it firstly computes objective values for d+ 1 points, that are affinely independent.
These points thus span a simplex in parameter space. Traversal of parameter space
is conducted by iterated replacement of the worst-performing point with a new point
that is computed on the basis of the other simplex points and that aims to improve the
objective.

Note that all these algorithms, except for the brute force ones and Nelder-Mead, require
availability of (partial) derivatives of the objectives to be optimized.

More recent approaches that are more specific to optimizing parameter sets of algorithms
were already discussed as related work in Section 3.3. None of those methods require
derivatives since in that scenario derivatives are rarely available. The discussed methods
traverse parameter space solely by function evaluations like the model-free methods in
[HHL+09; BSP+02; BYB+10], or by meta-models that are created solely from function
evaluations, like in [BLP10; KKF+11; HHL11; BBB+11; BMT+12]. The third discussed
class of derivative-free methods are Evolutionary Algorithms (EAs) [AST09; MMB+14a;
MMB+14b; Luk13; Deb01] which simulate biological evolution among a population of
candidate parameter sets to create better candidates by mutating and crossing them over.
Genetic Algorithms (GAs) [SP94] are a widely used class of EAs, but further classes, like
evolution strategies and genetic programming exist [Luk13; Deb01]. Hybrid or (synonymously)
Memetic Algorithms (MAs) [Mos89] are EAs that combine evolutionary methods with local
search. In a wider scope, the more general term of evolutionary computation includes
additional biology-inspired optimization techniques, e.g. Ant Colony Optimization (ACO)
[DB05] and Particle Swarm Optimization (PSO) [Ken10; RC06]. EAs readily extend to
multi-objective optimization.

As a summary, the preceding paragraphs listed derivative-based and derivative-free
algorithms for optimization, some of which can handle the multi-objective case. Provided
that the examined optimization problem fulfills the assumptions of the respective algorithm,
any of the presented algorithms can potentially serve to implement the Optimization stage in
Figure 3.2. This is enabled by the modular architecture of SynOpSis.

3.7.2 Algorithm Choice for Optimizing PAMONO Data Analysis

Concretely choosing the algorithm for realizing the Optimization stage in Figure 3.2 is
equivalent to selecting how to implement the “Update Parameters” box in the figure. In
order to choose a certain optimization algorithm, the particular problem to be solved must
be considered. As this thesis focuses on PAMONO data analysis, an optimization algorithm
suiting this application case is identified in the remainder of this section. From the optimization
point-of-view, the PAMONO data analysis task has the following properties:

• It has a large parameter space: The pattern detector for PAMONO has 28 free
parameters, cf. Section 5.7. In addition, there are between zero and three parameters for
the pattern classifier, cf. Sections 6.6 and 6.8. This large number of parameters leads to
combinatorial explosion, rendering exhaustive approaches like grid-based optimization
infeasible.

3.7. Optimization Stage 49

• The parameter space is a mixture of continuous and discrete variables (mixed-
integer [BKL+13]), with approximately equal numbers of boolean, integer and floating
point parameters.

• Approximating derivatives is impeded by the large number and mixed-type nature
of the parameters.

• PAMONO data analysis involves multiple objectives, cf. statements of objectives in
Sections 3.5.2 and 3.6.2.

• The objectives are non-linear and non-convex, as can be seen by empirically evalu-
ating a number of sample points.

Given these properties of PAMONO data analysis, the decision was made in favor of
using a Multi-Objective Genetic Algorithm (MOGA) due to the following advantages of this
technique:

• Evolutionary approaches to optimization are general and easy to use, while at the
same time very successful in practice as reported in, amongst many others, [AST09;
MMB+14a; MMB+14b; ARR+07; BN07; DK07; DPM00; GBG05; HBK10; KBM+09;
MKB09]. Evolutionary approaches are a quick way of exploring and quantifying the
potential for optimization in a given problem. They can serve as an initial step for
developing a more in-depth understanding/model of the underlying problem and for
identifying the components of a solution that contain the largest potential gain.

• Genetic Algorithms (GAs) can cope with the large parameter space in PAMONO and
are flexible enough to handle the mix of boolean, integer and floating point variables
arising in this application.

• No derivatives are required for running a GA. The only requirement is that the fitness,
i.e. the objective function(s), must be evaluable in some way. Hence, e.g. even energy
measurements can be optimized, cf. [Tim12; LSW13; LMS+14; NLE+15; LKD+14].

• GAs do not make any assumptions about the underlying objective landscapes. They
can handle non-convex objectives [AST09] and escape from local optima due to their
randomized subcomponents [Luk13].

• By extending them to MOGAs, GAs can readily handle the multi-objective optimization
arising in PAMONO. Several MOGAs that have been demonstrated to be successful
in practice are available, e.g. NSGA-II [DPA+02], SPEA2 [ZLT01], PAES [KC99] or
SMS-EMOA [BNE07].

• One of the goals during PAMONO prototype development is identification of the
trade-offs between opposing objective functions. In this context, the fact that MOGAs
are population-based pays off: They do not only evolve a single parameter set, but
create a so-called front of Pareto-optimal points (cf. Section 3.7.4), containing different
parameter sets that are non-dominated with respect to the objectives. From this
front, the trade-offs between objectives can easily be identified. In this regard, the
mechanisms of diversity preservation that are present in most MOGAs are another
beneficial feature: Diversity preservation encourages the parameter sets to be widely
spread across objective space, such that points succeeding in either of the objectives
can be found. Doing so enables thorough exploration and examination of the trade-offs
between objectives.

• Randomization is advantageous in scenarios with a high-dimensional parameter space but
low effective dimensionality [BB12]. In GAs, randomization occurs in the initialization,

50 Chapter 3. The SynOpSis Approach

mutation and crossover components, cf. Section 3.7.3. The advantageous effects of
randomization can be summarized as obtaining better results quality while using
considerably fewer function evaluations. These effects were shown in comparison to
grid search for optimization problems where the parameter space consists of dimensions
with different importance for the objective value: Randomized search strategies better
handle19 the case of low effective dimensionality, i.e. the case where only a subset of
the parameter dimensions has a large influence on the objective. In practice, this is
often the case [CMO97].

• Despite employing randomized subcomponents, GAs harvest the advantages of exploiting
knowledge from previous evaluations, as e.g. meta-modeling does. Knowledge acquired
during simulated evolution is in effect where new parameter sets are generated from
well-performing old parameter sets.

• As a last point, GAs lend themselves to parallelization: Objective values for multiple
parameter sets can be computed simultaneously by distributing the parameter sets to
different compute nodes. Communication overhead is very low because the data to
be processed needs to be transferred only once, and parameter sets typically are very
small in comparison to that data. For PAMONO data analysis, each compute node
needs to have a Graphics Processing Unit (GPU) because it executes the bulk of the
computation. A system for distributing PAMONO evaluation across a compute cloud
is presented in [LMS+14].

With the rationale for choosing a MOGA in implementing the Optimization stage of
SynOpSis given, this class of algorithms is now briefly summarized, and required terminology
is introduced. Section 3.7.3 covers genetic algorithms in general, while Section 3.7.4 provides
extensions for the multi-objective case. These abstract depictions of concepts lead to a
concrete MOGA implementation in terms of NSGA-II [DPA+02] in Section 3.7.5. Finally,
Section 3.7.6 describes how optimization of SynOpSis can be conducted in a global and in a
sequential fashion. Note that the depiction of the overall genetic algorithm used to optimize
SynOpSis in the context of PAMONO is given later, in Section 7.3.2 because it is closely
associated with the experiment description.

3.7.3 Genetic Algorithms

A key difference between Genetic Algorithms (GAs) and many other search heuristics is that
GAs are population-based methods, maintaining more than one candidate solution at a time.
In conjunction with the fact that GAs are heavily inspired by biological evolution, this leads
to a whole new terminology employed in the context of GAs, which will be introduced in this
section, following the textbook by Luke [Luk13]. The order of presentation is bottom-up.

Terminology 3.2. A gene corresponds to one parameter to be optimized and thus to one
dimension of the parameter space. A fixed length vector of genes is denoted a chromosome
and can be used to represent a point in parameter space, i.e. a complete parameter set. The
objective functions, mapping chromosomes from parameter space to objective space are denoted
fitness functions. Consequently, the point in objective space obtained by evaluating all
fitness functions for a given chromosome is called its fitness. A candidate solution is denoted
an individual. One can refer to an individual in parameter space as well as in objective space,

19Figure 1 in [BB12] very well illustrates the reason for this.

3.7. Optimization Stage 51

1 7 3 8 7 5 1 9

2 3 0 6 1 0 7 3

6 3 6 0 9 8 7 8

3 6 5 5 2 2 4 2

8 9 0 5 0 8 9 0

9 0 6 7 5 8 8 6

1 2 1 0 1 6 9 3

1 7 3 8 7

5 1 92 3 0 6 1

0 7 3

6 3

6 0 9 8 7 83 6

5 5 2 2 4 2

8 9 0 0 8 9 0

9 0 6 7 5 8 8 6

1 2 1 0 1 6 9 3

1 7 4 8 7

5 3 92 0 0 6 1

0 7 3

6 3

6 7 9 8 7 83 6

5 5 2 2 4 2

8 9 0 5 0 8 9 0

9 0 6 7 5 8 8 6

1 2 1 0 1 6 9 3

1 7 4 8 7

5 3 92 0 0 6 1

0 7 3

6 3

6 7 9 8 7 83 6

5 5 2 2 4 2

8 9 0 5 0 8 9 0

9 0 6 7 5 8 8 6

1 2 1 0 1 6 9 3

Mutation

Crossover

Crossover

Mutation

Mutation

Mutation

Generation � Generation � + 1

Indiviual,mrepresented
asmamchromosome

Gene

Po
p

u
la

ti
o

n
m(

o
fm

si
ze

m7
)

Se
le

ct
ed

mIn
d

iv
id

u
al

s

5

Figure 3.7: Genetic Algorithm (GA) Terminology and Operations. Each of the four columns shows a
population consisting of seven individuals. Each individual is represented as a chromosome,
which is a vector of genes. In the example, the number of genes is eight. Each gene encodes
one parameter to be optimized. A GA first selects individuals, e.g. by tournament selection.
The selected individuals are recombined via crossover, i.e. by exchanging genes. The figure
shows two instances of one-point crossover. Subsequently individuals undergo mutation, i.e.
randomly picked genes are assigned new values. After crossover and mutation, the resulting child
individuals become the next generation of the GA, along with the elite (i.e. best-performing)
individuals in the parent generation (here: first two and last line). Figure adapted from [Luk13].

denoting the chromosome of the solution and its fitness, respectively. A set of individuals is
called a population. One iteration of a GA is called a generation. Homonymously, the
respective population generated in that iteration can also be denoted as a generation.

Figure 3.7 illustrates this terminology and furthermore introduces three crucial operations
involved with GAs: selection, crossover and mutation. These are described now, in the
context of a detailed explanation of Algorithm 3.1, following [Luk13]. This algorithm is a
basic, single-objective GA with elitism, i.e. the best-performing individuals in each generation
are maintained in the subsequent one. Elitism has been demonstrated to increase speed of
convergence for Multi-Objective Genetic Algorithms (MOGAs) [ZDT00; Rud99], that will
be discussed in Sections 3.7.4 to 3.7.5. Algorithm 3.1 receives as inputs the size S of the
population in each generation, along with the number G of maximum allowed generations
and the number E of elite individuals that are passed on to the subsequent generation. The
output of the algorithm is the chromosome x∗ ∈ PP of the best-performing individual that
was encountered in the course of the GA. PP is the P -dimensional parameter space, where
P is a placeholder for other sets: Each dimension of PP may be from a different set, e.g.
booleans, ordered/unordered discrete values or real values.

Initialization of the population X with S individuals from PP is the first step in the GA.
Typically, an individual x ∈ PP is initialized by drawing each of its gene values randomly
from the set of values allowed for that gene. The distribution from which it is drawn may
be biased towards regions known to contain good values for that gene. Furthermore, it is
possible to include entire individuals known to perform well, or handcrafted individuals into
the initial population.

After initialization of the population, the best-performing individual x∗ is initialized to
the dummy individual ◻ to indicate that no individual was evaluated yet. Furthermore, the

52 Chapter 3. The SynOpSis Approach

Algorithm 3.1 Genetic Algorithm (GA) with Elitism [Luk13]
Input: Population size S, number of generations G, elite size E, with S −E even
Output: Best-performing individual x∗

X← initializePopulation(S) // . e.g. random values for all genes
x∗ ← ◻
g ← 1 // . initialize generation counter
d← false // . ‘done’-flag for termination
while ¬d do
for each individual xi in X do
yi ← ϕ(xi) // . evaluate and remember fitness
if (x∗ = ◻) ∨ (yi▷ y∗) then

x∗ ← xi // xi performs better than previous best x∗, thus update
y∗ ← yi // . also track best observed fitness

end if
end for
X̂← getElite(X,E) // E fittest individuals from X, random choice for ties
for (S −E)/2 iterations do

xa ← selection(X) // . select parent xa from X
xb ← selection(X) // . select parent xb from X
x̂a, x̂b ← crossover(xa,xb) //. .create two children via crossover
x̂a ← mutation(x̂a)
x̂b ← mutation(x̂b)
X̂← append(X̂, x̂a, x̂b) // . append new individuals to X̂

end for
X← X̂ // . population for next generation
g ← g + 1
d← (y∗ = ybest) ∨ (g = G) //. terminate on best-possible fitness or last generation

end while
return x∗

generation counter g is initialized to 1 and the termination flag d is set false. Then, as long
as d remains false, the following procedure is carried out: Firstly, for each individual xi in
the current population X, the fitness function ϕ(xi) is evaluated, yielding the fitness value yi.
If x∗ is the dummy ◻ or if yi is better than the current best observed fitness y∗ of x∗, then
xi and yi become the new x∗ and y∗. Whether yi is better, is determined with the better
than-relation ▷ between scalar objective values: If objective ϕ is to be maximized, yi▷ y∗

means yi > y∗ and if it is to be minimized, it means yi < y∗.

With all fitnesses known for the current population X, its elite is determined by identifying
the E best-performing individuals in X. Among individuals with identical fitness, random
draws are conducted until the number E has been reached. The elite is stored in the population
for the next generation, denoted as X̂. The remaining S −E individuals are generated within
(S −E)/2 iterations of a breeding process, consisting of selection, crossover and mutation,
as described now. Each iteration of this process creates two new individuals.

3.7. Optimization Stage 53

Selection is the first operation in the breeding process. The selection technique determines
how individuals are picked for breeding. The most common selection technique is tournament
selection [Luk13]: In a tournament of size T ∈ N>0, one individual is drawn at random from
a population to sequentially compete against T − 1 other individuals. In each iteration, a
competitor individual is drawn at random from the population and if it is better in terms
of fitness, it becomes the new best individual observed within this tournament. The best
individual after the last iteration wins the tournament and is selected. Note that for T = 1,
tournament selection becomes random selection and that for increasing T , it becomes
increasingly selective because high fitness values become more and more important in order to
win a tournament. Further selection techniques, like fitness-proportionate selection and
a variation thereof, called stochastic universal sampling, can be found in the literature
[Luk13].

Crossover follows selection and uses the two selected parent individuals to form (usually)
two child individuals by exchanging parts of their chromosome. Figure 3.7 shows two
examples of the so-called one-point crossover: A random crossover point is selected in the
chromosomes of the two individuals to be crossed over, and the gene values following that
crossover point are swapped between the two individuals. Note that in one-point crossover
the probability of breaking e.g. the first and last entry of the chromosome vector apart is
much higher than for two adjacent entries in the vector. This can cause so-called linkage
problems, namely if parameters that need to work together to attain a good fitness have
a high probability of being broken apart. To resolve this, one can either place them closer
together on the chromosome, thus increasing the probability that they will be crossed over
en bloc, or one can choose two-point or uniform crossover: Two-point crossover chooses
two crossover points instead of only one, and swaps the gene values between those points.
Uniform crossover swaps each gene value independently with a certain probability. Note
that a simulated evolution using solely one of these crossover mechanisms can not generate
individuals outside the bounding box in parameter space of the initial population: Such an
evolution would be a local and not a global search.

Mutation is a mechanism that enables the simulated evolution to escape the bounding
box of its initial population and that makes it a global search. In general, mutation means
that randomly chosen genes in the chromosome of an individual are assigned new values
determined in some randomized way, as illustrated for four individuals in Figure 3.7. Assigning
randomized values to randomly picked dimensions in the parameter space obviously allows the
search to escape the bounding box in parameter space of the initial population. Furthermore,
it makes every point in parameter space reachable with non-zero probability, hence making
the search global. Mutation is carried out immediately after crossover in Algorithm 3.1. Note
that different types of genes require different mutation procedures. For genes encoding binary
variables, the bit-flip mutation is very common. It inverts the bit value in each binary gene
with a given probability. For genes encoding integer variables, integer randomization can
be used, where randomly chosen genes are assigned new random values from their sets of
allowed values (as in Figure 3.7). An alternative is random walk mutation, where the old
gene value is used as the starting point of an integer random walk, the end point of which
becomes the new gene value. For genes encoding floating point variables, usually Gaussian
convolution is used as the mutation operator: For randomly chosen genes, values drawn

54 Chapter 3. The SynOpSis Approach

from a Gaussian distribution with zero-mean and a certain variance are added to the value of
the gene.

After selection, crossover and mutation, Algorithm 3.1 continues by appending the two
newly bred individuals to the population X̂ containing the elite from X. After (S −E)/2
iterations of this breeding loop, X̂ contains S individuals and is used as the population of
the next generation. The generation counter is increased by one and termination criteria
are checked: If y∗ already is the best-possible attainable value of the objective, or if the
maximum number G of generations has been reached, the main loop terminates, and the
parameters x∗ of the best-observed individual are returned.

3.7.4 Multi-Objective Genetic Algorithms

Algorithm 3.1 from the previous section specifies a basic, elitist GA for the single-objective case,
i.e. only one objective function is optimized. The key difference between the single-objective
and the multi-objective case is comparability between fitness values: In single-objective
optimization, fitness values are scalar and therefore inherit the ordering of the underlying set,
usually R. Given two scalar fitness values ya, yb ∈ R, it can be decided, which one is better,
using the < or the > relation on R, so comparability between individuals is not an issue. In
contrast to that, in multi-objective optimization, fitness values are vectorial quantities. Given
two vectorial fitness values ya,yb ∈ RO, where O is the number of objectives, it can occur that
ya is better than yb in one objective while worse in another, and fitness values can not readily
be compared. In order to generalize GAs to the multi-objective case, this comparability issue
must be handled, requiring new terminology which is introduced now. Extending GAs in
this direction gives rise to the concept of Multi-Objective Genetic Algorithms (MOGAs).
Following [Deb01] and adapting the notation used therein, the following definition is made:

Definition 3.1. Let xa,xb ∈ PP represent two individuals a and b as chromosome points
in the P -dimensional parameter space PP . Let ϕi(x) ∈ R, i ∈ {1, . . . ,O} denote the value
of objective function ϕi as obtained by a parameter space point x. As the number of such
objective functions is O, the objective space is RO. Let ▷ denote the better than-relation
between scalar objective values: If objective i is to be maximized, ϕi(xa) ▷ ϕi(xb) means
ϕi(xa) > ϕi(xb) and if it is to be minimized, it means ϕi(xa) < ϕi(xb). Then the parameters
xa are said to dominate the parameters xb if the following conjunction of conditions holds:

∀i ∈ {1, . . . ,O} ∶ ϕi(xb) ⋫ ϕi(xa) (3.6)
∧∃j ∈ {1, . . . ,O} ∶ ϕj(xa) ▷ ϕj(xb).

The first line requires that the dominating point xa is not worse than xb in any objective i,
while the second line requires that it is strictly better in at least one objective j.

In that case, a reasonable decision-maker would prefer xa over xb, which can be regarded
as an ordering of xa before xb, making these individuals comparable. Besides this simple
case, it can also occur that for two parameter sets xa,xb, neither xa dominates xb, nor xb
dominates xa. If the individuals are not identical, then there is at least one objective that is
better in xa and one that is better in xb. In that case, a reasonable decision-maker can not
(without introducing assumptions about the relative importance between objectives, bearing

3.7. Optimization Stage 55

the danger of comparing apples and oranges) decide which one to prefer. If this is the case,
xa and xb are called incomparable [ZBT07]. A particularly important set of incomparable
points is the set of non-dominated points, introduced in the following definition [Deb01]:

Definition 3.2. A point xa ∈ PP is called non-dominated if there exists no xb ∈ PP , that
dominates xa. The set of all such non-dominated points is called the non-dominated set,
or alternatively the Pareto front or Pareto-optimal set.

Note that this definition assumes knowledge of objective values ϕi(x) for every x ∈ PP .
Usually in optimization, no analytic forms of the ϕi are available (only in toy problems) and
their evaluations are expensive. Therefore, in practice, the terms from Definition 3.2 are
usually regarded with respect to the points x that were already visited during the optimization.
That means the Pareto front consists of those parameter vectors that are non-dominated
among the already visited (and kept20) parameter vectors. This concept of a non-dominated
set is also referred to as an approximation set [ZBT07] because its elements may be
dominated by the exact Pareto-optimal set considering all points in parameter space [Deb01],
cf. Figure 3.8a for an illustration. The key difference in the quality of MOGAs lies in how
well their computed approximation set captures the true Pareto front. This involves not
only the distances between the computed fitness vectors from the true front, but also how
well these fitness vectors are spread over the entire extension of the front. This concept of
spread over the front is denoted as the diversity of the approximation set. High diversity is
required for analyzing the trade-offs between objectives. Furthermore, it enables a reasonable
decision-maker to pick a design point from a wide range of options in objective space. The
ideal is a uniform distribution of the approximation set on the entire (unknown) theoretical
Pareto front, enabling thorough examination of the available options.

Given these prerequisites, the following issues can be identified that are to be addressed
when designing a MOGA:

• Comparison of vectorial fitnesses as arise in multi-objective optimization must be
enabled. The comparison relation is required for selection (and for determining the elite,
in case of an elitist algorithm). Comparison is usually based on the Pareto-dominance
relation. The tricky part is to decide between individuals that are incomparable with
respect to the Pareto-dominance relation.

• Diversity of the computed Pareto front should be encouraged by the search strategy.
Preservation of diversity may be used as a criterion aiding comparison and thus help in
addressing the previous point.

• Elitism can optionally be implemented in a MOGA. Doing so has been demonstrated
to increase convergence speed [ZDT00; Rud99].

Typically, MOGAs must use larger population and elite sizes than their single-objective
counterparts because the number of individuals required to cover all regions of a Pareto front
is larger than for finding a single optimized individual: It grows exponentially in the number
of objectives to be optimized [Luk13].

Now that the goals, required terminology and issues to be addressed in designing a MOGA
have been presented, a popular representative of this class of algorithms is summarized:
NSGA-II [DPA+02].

20Deciding which points to keep in the population is an important problem in population-based methods,
especially in the presence of multiple objectives, cf. Section 3.7.5.

56 Chapter 3. The SynOpSis Approach

ϕ1 (lower is better)

ϕ
2
(l
ow

er
is

b
et
te
r)

True Pareto Front
Approximated Front
Non-dominated
Dominated

(a) Pareto Front

ϕ1 (lower is better)

ϕ
2
(l
ow

er
is

b
et
te
r)

Rank 1

Rank 2

Rank 3
Rank 4

Rank 5

(b) Pareto Ranks

Figure 3.8: Pareto Front and Ranks. (a) shows the true Pareto front (in objective space) of an analytical
toy problem as a green curve and an approximation to this front, found by a MOGA, as blue
stairs. In real-world problems, the true Pareto front is typically unknown. The non-dominated
set found by the MOGA is depicted as large blue squares, whereas dominated points are marked
by small gray squares. The non-dominated points may lie on the true front as well as behind it,
while the dominated points necessarily lie behind the front. The goal of a MOGA is to converge
to an approximation set located as closely as possible to the true front, while being spread
uniformly across it. (b) illustrates the concept of Pareto ranks as used e.g. by NSGA-II: The
non-dominated points have Rank 1. If these points were removed from the set, the non-dominated
points of the reduced set have Rank 2, analogously for higher ranks. Figures adapted from
[Luk13].

3.7.5 Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

Among the multitude of MOGAs available in the literature (e.g. NSGA-II [DPA+02], SPEA2
[ZLT01], PAES [KC99] or SMS-EMOA [BNE07]), the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) by Deb et al. [DPA+02] was chosen as the algorithm governing the
Optimization stage of SynOpSis (cf. Figure 3.2). The reason for this choice was its consistent
success in very diverse applications, as reported e.g. in [ARR+07; BN07; DK07; DPM00;
GBG05; HBK10; KBM+09; MKB09].

NSGA-II will be briefly summarized now, with a presentation that proceeds along the list
of issues to be addressed in designing a MOGA, as given at the end of the previous section.
Unless otherwise stated, the depiction follows the original paper by Deb et al. [DPA+02].

Comparison of vectorial fitness values is done with respect to two quantities: Pareto ranks
and sparsity. Pareto ranks are the primary criterion and will be explained here, while sparsity
is treated as a black box for now and will be explained in the next paragraph about diversity.
Figure 3.8b illustrates the concept of Pareto ranks: It shows a 2-D objective space where
both objectives are to be minimized. Rank 1 consists of the non-dominated points and hence
equals the computed Pareto front. If the points with rank 1 were removed and the front
recomputed, the resulting new front consists of the points in rank 2, analogously for all
further ranks. Generally speaking, rank i contains all points that are dominated only by the
points in ranks i−1, i−2, . . . , 1. Computing Pareto ranks is denoted as non-dominated sorting
which gives NSGA-II its name. One of the major contributions of NSGA-II is a fast exact

3.7. Optimization Stage 57

algorithm for non-dominated sorting: A naïve implementation of non-dominated sorting has
time complexity O(OS3) and storage complexity O(S), where O is the number of objectives
and S the population size. NSGA-II reduces time complexity to O(OS2) while increasing
storage complexity to O(S2). Another major contribution of NSGA-II is an approach to
comparing vectorial fitnesses: It uses the crowded-comparison relation ≻n, which employs
Pareto ranks as the primary, and sparsity as a secondary criterion in comparing vectorial
fitnesses. Up to its description in the next paragraph, sparsity can be taken as a black box
quantity, measuring for each individual, how rare similar individuals are in objective space.
The comparison relation ≻n is defined as follows: For two objective vectors ya,yb ∈ RO, the
relation ya ≻n yb, meaning ya is preferred over yb, holds if one of the following conditions
holds:

• The Pareto rank of ya is smaller than yb. This means ya dominates yb in the classical
sense of Definition 3.1.

• The Pareto rank of ya is equal to that of yb, i.e. ya and yb are incomparable in the
classical sense, and the sparsity of ya is larger than that of yb, i.e. individuals performing
similarly to ya are rarer in objective space.

Otherwise yb ≻n ya. To put it shortly, NSGA-II compares individuals by preferring lower
Pareto-ranks, and it breaks ties in ranks by preferring higher sparsity. Note that objective
values are not used directly in the definition of ≻n, but indirectly, within the computation of
Pareto ranks and sparsity. NSGA-II uses the ≻n relation typically in a tournament selection
scheme with tournament size T = 2. Furthermore, ≻n finds application in determining the
elite individuals.

Diversity preservation and encouragement follow the goal of obtaining a set of non-
dominated points that spreads over the entirety of the theoretical Pareto front of an opti-
mization problem. In NSGA-II, diversity is preserved and encouraged by using sparsity as a
secondary criterion in comparing individuals. Sparsity of an individual is computed by the
following procedure: For each objective separately, only individuals in the same Pareto rank
are regarded, and among those, the two individuals with the next smaller respectively next
larger value in that objective are determined. If one of these neighbors can not be found,
the individual resides on the boundary of its rank and is assigned infinite sparsity. If both
neighbors exist, their difference in the regarded objective is normalized by the range of that
objective. These normalized differences are accumulated over all objectives, and the resulting
sum defines the individual’s sparsity. Hence the further away the neighbors in objective
space, the higher the individual’s sparsity and the rarer similar individuals are in objective
space. Preferring individuals with higher sparsity makes individuals in less crowded regions
of objective space win tournament selection in case of equal Pareto ranks. This obviously
preserves and encourages diversity of the computed front.

Elitism in NSGA-II is achieved by maintaining two separate populations in each generation:
Xp is the parent population, corresponding to the elite individuals, which mate and generate
the children population Xc. Now the parent and children populations X̂p, X̂c for the next
generation are obtained as follows: Pareto ranks for the union of the previous Xp,Xc

are computed using non-dominated sorting. The elite parent population X̂p for the next
generation is filled up to the elite size E, starting with the individuals of rank 1, i.e. with

58 Chapter 3. The SynOpSis Approach

the non-dominated Pareto front of the union of Xp and Xc. This is continued until the rank
i is reached that would exceed E if added to X̂p. For this rank, the ≻n relation is used to
determine the best individuals, which are appended to X̂p until it contains E individuals.
Now from this next generation elite population X̂p, the next generation working population
X̂c is bred, running a breeding loop as in Algorithm 3.1, with tournament selection using
the ≻n relation and typically tournament size T = 2. This process is iterated in the next
generation, starting from X̂p and X̂c. Note that NSGA-II in its original implementation uses
an elite size E that is equal to the population size S, i.e. the elite population contains as many
individuals as the working population. This choice is not a necessity but just a heuristic, and
Deb et al. do not argue for it [DPA+02]. Keeping the elite and working populations separate
constitutes a difference to Algorithm 3.1, where the elite is a subset of the working population
and only S −E individuals undergo the breeding process. Instead, NSGA-II determines its
elite of size E from non-dominated sorting of S +E individuals and stores it in an external
archive, from which S new individuals are bred.

3.7.6 Global versus Sequential Optimization of SynOpSis

With NSGA-II selected as the algorithm to implement the Optimization stage of SynOpSis,
two approaches to conducting this optimization can be taken, that will be explained in the
following paragraphs.

Global optimization is the approach visualized in Figure 3.2: The top line of the opti-
mization loop, starting with the pattern detector and ending with the classifier is executed
as a whole before any evaluation of objective functions is done. That means parameters of
the detector and classifier are optimized simultaneously, and one pass of the optimization
loop involves both, detector and classifier. Consequently, one individual in this optimization
consists of detector and classifier parameters. Computing the fitness of an individual means
computing the objectives of the detector (e.g. Recall and M-Rate, cf. Section 3.5.2) and
those of the classifier (e.g. Recall and Precision, cf. Section 3.6.2), and these objectives are
optimized simultaneously. Doing so enables devaluation of individuals containing detector
parameters that produce patterns which are hard21 to be classified correctly: In this case,
objectives measured for the classifier will have poor values, and the associated individual can
easily be dominated in these objectives. This can have a positive influence on results quality
in practice because it implements a feedback mechanism from the classifier back to detector
parameters.

Sequential optimization can not benefit from such a positive influence: In sequential op-
timization, the detector and the classifier are optimized separately, with classifier optimization
depending on the results of detector optimization, but without any possibility of influencing
it. In contrast to the global optimization depicted in Figure 3.2, sequential optimization
involves two optimization loops, each with separate evaluations of objectives. The first loop
optimizes detector parameters with respect to the detector objectives. Feature extraction is
not necessary. Instead, the objectives are evaluated immediately on the detected patterns,

21Exemplary causes making patterns hard to classify can be adversely shaped pattern representations, or
image processing settings in pattern detection that exert negative effects on the subsequent computation of
features.

3.8. Desirability Functions for Formalizing Expert Preferences 59

which is possible because they relate solely to detection performance. This optimization
yields a Pareto front of parameter sets for the detector, among which the best-performing one
is selected using the desirability approach presented in Section 3.8. The patterns detected
using this parameter set are then passed to feature extraction, and the feature-annotated
patterns are the input of the second loop that optimizes classifier parameters, solely with
respect to classifier objectives.

Regardless of whether the Optimization stage is run in a global or sequential fashion, the
type of output is the same, consisting of optimized detector and classifier parameters that
have been chosen from their Pareto front(s) by the desirability approach in Section 3.8 in
combination with the model selection in Section 3.9. How these parameters are used in
analyzing the real sensor input data is described in the context of the Application stage from
Figure 3.2, cf. Section 3.10. The overall configuration of the MOGA as used in the PAMONO
scenario belongs to the experiment description that can be found in the evaluation chapter,
cf. Section 7.3.2.

3.8 Desirability Functions for Formalizing Expert Preferences

The concept of desirability as a formal way of expressing expert preferences was first introduced
by Harrington [Har65] and has since then been used extensively in the context of multi-
objective optimization [BM91; Wu04; MT06; PN06; MTT07; JK09; TM09]. Two key benefits
of using desirability in multi-objective optimization are as follows:

1. Automatic selection of the most desirable individual from a Pareto front is
enabled by the desirability approach because it allows stating preferences of expert users
in a formal way: The desirability approach is a nonlinear technique for aggregating
multiple objectives in a scalar number. Nonlinearity allows modeling more complex
relations between objectives than is possible with linear scalarization techniques like
weighted summation. Once formalized, the expert preferences can be automatically
applied to a given Pareto front, yielding the single most desirable individual on the
front. In this scenario, the desirability approach is used solely after optimization.

2. Narrowing the search to the relevant part of the Pareto front, on the other
hand, is enabled by applying the desirability approach during optimization: Instead of
searching across the entire Pareto front, the limited population and elite sizes are used
more efficiently by focusing them in the relevant part of the front. This capability is
achieved by transforming each dimension of the original objective space with a so-called
Desirability Function (DF). After this transformation, individuals in undesirable parts of
the front in the original objective space are likely to be dominated in the DF-transformed
objective space. In turn, they are unlikely to be selected for breeding new individuals.
Thus the search is directed toward the desirable regions of the front.

Section 3.8.1 provides the relevant background about Harrington’s DFs, applied to
normalize single objectives, while Section 3.8.2 presents Desirability Indices (DIs) as a way
of aggregating DFs to scalar objectives. After these backgrounds have been established,
Section 3.8.3 depicts how DFs and DIs are used in SynOpSis for picking a single best
individual from a Pareto front and for guiding optimization. The concrete desirability setting
used for PAMONO is part of the experiment description and hence given in Section 7.3.3.

60 Chapter 3. The SynOpSis Approach

-3 -2 -1 0 1 2 3

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ
(y
)

l = −1 u = 1

n = 0.2
n = 0.5
n = 1
n = 3
n = 10

(a) Varying n

-6 -4 -2 0 2 4 6

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ
(y
)

n = 3, l = 2, u = 4
n = 3, l = 0, u = 4
n = 3, l = −2, u = 4
n = 3, l = −4, u = −2

(b) Varying l and u

Figure 3.9: Two-Sided Harrington Desirability Functions – Examples. (a) shows Desirability Func-
tions (DFs) with varying kurtosis parameter n and constant lower and upper specification limits
l = −1, u = 1. (b) keeps n = 3, while varying l and u. Note that the peak of the DFs is attained
halfway between l and u, and that changing l and u while keeping u− l constant yields translates
of the same function.

3.8.1 Harrington Desirability Functions

Computation of the Desirability Function (DF) for a given objective can be regarded as a
normalization step: Regardless of the range occupied by an objective, and whether it is to be
minimized or maximized, its DF is always between zero and one and must be maximized.
Besides actual objectives, (especially soft) constraints can also be rephrased in terms of DFs,
where the desirable values (close to one) correspond to the interval where a constraint is
fulfilled.

SynOpSis uses Harrington’s two-sided DF [Har65] for the reasons given after presenting
its formal definition which follows [TW06]:

δ(y) = exp(− ∣2y − (u + l)
u − l ∣

n

) . (3.7)

Here, δ(y) ∈]0,1] is the desirability of objective value y ∈ R, and l, u ∈ R are the lower,
respectively upper specification limits, which determine the interval of values for y that are
deemed desirable. Finally, n is the kurtosis parameter determining the peakedness of the DF.

Figure 3.9a illustrates the kurtosis parameter n by plotting example functions obtained
from varying n, while keeping l = −1, u = 1 constant. Increasing n makes the peak of
the resulting curve flatter, resulting in a plateau close to one of nearly equally desirable
corresponding values of y. Decreasing n makes the peak more spiky, narrowing the interval of
fully desirable values of y, but widening the tails of the function. Figure 3.9b demonstrates
the effect of changing the lower and upper specification limits l, u, while keeping n constant.
The peak of the function is always located at l + (u−l)

2 . Changing l and u while keeping the
difference u − l constant yields translates of the same function.

3.8. Desirability Functions for Formalizing Expert Preferences 61

For SynOpSis, Harrington DFs were chosen because their non-zero tails give them the
ability to distinguish different points below the lower specification limit (up to numerical
precision). This is an advantageous property because the optimizer is pulled into the direction
of improvement even for those individuals that do not meet the lower specification limit:
Degrees of undesirability in undesirable individuals can be distinguished and “less undesirable”
individuals are more likely to take part in breeding in the context of MOGAs. As a downside,
Harrington DFs also distinguish different points above the upper specification limit, unless
modified accordingly. In some contexts, e.g. if for satisfied constraints desirability should be
plainly one, this is an adverse property because distinction of different degrees of constraint
satisfaction is not always intended. For such cases, Derringer-Suich DFs [DS80] can be used,
which are flat one for values above the upper specification limit. Note however, that these in
turn, do not distinguish points below the lower specification limit. In SynOpSis, indifference
between points above the upper specification limit is not essential because for the optimized
objectives (cf. Sections 3.5.2 and 3.6.2) “better is always better”.

Besides the two-sided Harrington DF from Equation (3.7), there is a one-sided version
using a double exponential [TW06]. It is called one-sided because the desired interval is
bounded on only one instead of two sides. In SynOpSis, the objectives are in fact one-sided:
They are either to be minimized or maximized. However, they are bounded and thus also
have a target value, which enables using two-sided DFs with the peak placed over the target
value. Hence both kinds of DFs are eligible to be used in this case. The two-sided version was
chosen because it provides a measure of controlling kurtosis via n, which the one-sided version
does not. This additional control enables highly spiky DFs with long non-zero tails. This is
useful for objectives like detector Recall: More detector Recall is always more desirable, but
it must also be possible to distinguish low values of it to guide optimization into the right
direction. This heuristic can very well be modeled using the two-sided Harrington DF.

3.8.2 Desirability Indices

While computing DFs is a normalization step applied separately to multiple objectives,
computing a Desirability Index (DI) is a scalarization step, aggregating the DFs of multiple
objectives into a single scalar number. The most commonly used function for aggregating
DFs is the geometric mean [TW06], and the geometric mean DI is defined as

∆(y) = (
O

∏
i=1
δi(yi))

1/O
, (3.8)

where O is the number of objectives, δi is the DF using ni, li, ui specific to the ith objective,
and yi denotes the value attained in that objective. The geometric interpretation of the
geometric mean of O values is that for an O-dimensional hyperrectangle with side-lengths
equal to these values, it gives the side-length of a hypercube containing the same hypervolume
as the hyperrectangle. Notably, it is zero if one of the input side-lengths is zero, since the
hypervolume enclosed by the hyperrectangle then becomes zero.

As a consequence, if DFs are aggregated using the geometric mean as DI, all objectives
need to have desirable values to assign an individual a high DI. One objective with low or
zero desirability devalues22 the entire individual. Therefore, individuals from the front that

22This is a strong contrast to linear scalarization methods, where bad values in one objective can be
compensated for by good values in another.

62 Chapter 3. The SynOpSis Approach

fail in at least one objective would, despite their Pareto-dominance, never be chosen as the
best individual from the front. Another advantage of the geometric mean DI is that it enables
easy identification of cases where the optimization failed to produce an individual that is
reasonably strong in all objectives: Then the DI is below a certain threshold, and the failure
can be reported to the user, instead of continuing analysis with possibly very bad results.
Furthermore, the following important property holds for the geometric mean DI:

Lemma 3.1. If the geometric mean DI over strictly monotonic DFs of multiple objectives
is optimized as a single objective, the obtained maximum is non-dominated in the original
objective space, among the individuals visited during that optimization, i.e. it resides on the
approximated Pareto front in multi-objective space.

Proof. Assume the individual with maximum DI is not on the Pareto front in the original
objective space. Not being on the front means that there exists an individual on the front that
dominates the individual with maximum DI. Using Definition 3.1, the dominating individual
is better in at least one objective, and not worse in any other. By strict monotonicity of the
employed DFs, it follows that at least one DF in the geometric mean in Equation (3.8) is
larger for the dominating individual. Then, as a product grows if one of its factors grows, the
geometric mean in Equation (3.8) is larger for the dominating individual, contradicting the
assumption that the geometric mean of the individual with maximum DI is maximum.

Similarly, optimizing objective DFs in a multi-objective fashion yields a Pareto front in
desirability space that is non-dominated in the original objective space, if the employed DFs
are strictly monotonous. An alternative to the geometric mean DI is taking the minimum
among objective DFs as the DI [TW06]. This does, however, not guarantee a property
analogous to Lemma 3.1.

As a conclusion from this section, arbitrary subsets of objectives and constraints can be
scalarized in DIs, after or during optimization. It is possible e.g. to create a combined DI for
all objectives and another one for all constraints, enabling monitoring of objective attainment
and constraint violation over a large number of objectives and constraints in a single 2-D
plot. Maxima with respect to strictly monotonous DFs or with respect to the geometric
mean DI are non-dominated in original objective space, among the individuals created during
optimization.

3.8.3 Desirability in SynOpSis

In the introduction of this section, automatic selection of the most desirable individual from
a Pareto front and narrowing search to the relevant part of the Pareto front were named
as the two key benefits of using the desirability approach in multi-objective optimization.
SynOpSis makes use of both, but in different scenarios.

The “desk” scenario takes the perspective of algorithm design and problem analysis.
Here, the desirability approach is applied solely after optimization, for automatically selecting
the best individual from the obtained Pareto front. Optimization is multi-objective in the
original objective space, enabling its thorough exploration and analysis of trade-offs between
the objectives because the full front is searched.

3.9. Model Selection and Performance Estimation 63

The “lab” scenario is more application-oriented, taking the perspective of lab workers
applying SynOpSis in analyzing PAMONO or similar data. Here the search is narrowed to
the relevant part of the Pareto front by applying the desirability approach already during
optimization, which can be done in two ways: The first way is multi-objective optimization
of DFs, integrating expert preferences into searching in a subregion of the original Pareto
front, located in the relevant part of objective space. The second way is single-objective
optimization of the DI, searching for a single best individual that performs well in every
constituent objective. In comparison to not applying the desirability approach, both ways, in
theory, enable two benefits: Solutions of the same quality may be found with fewer evaluations,
and if fitness is not yet saturated, better solutions may be found with the same number of
evaluations. These benefits are important in the lab, where time is a constrained resource:
Optimization must be as quick as possible, while maintaining results quality. Note that the
concentration on the desirable part of the Pareto front seemingly contradicts the purpose of
the diversity preservation mechanisms common in MOGAs. However, desirability mechanisms
are a way of constraining diversity in a controlled and target-oriented manner. The resulting
search in the desirable part of the front still benefits from diversity in that desirable part.

The concrete desirability settings used in PAMONO data analysis are part of the experiment
description and hence given in Section 7.3.3.

3.9 Model Selection and Performance Estimation

Bergstra et al. consider manual tuning of algorithmic parameters to make them suit a given
problem instance as something “more of an art than a science” and suggest that “hyper-
parameter optimization should be regarded as a formal outer loop in the learning process”
[BBB+11]. While referring to machine learning tasks only, their suggestion may prove
beneficial in other contexts as well. SynOpSis explores this suggestion in the context of its
consecutive pattern detection and classification task by implementing optimization of all
relevant parameters as an outer loop around the approach depicted in Figure 3.2. Unleashing
the full potential of parameter optimization requires mechanisms that avoid overfitting the
parameters to the dataset they are optimized on [SH97]. Here overfitting means, that
the parameters may perform well on the dataset upon which they were optimized (because
they were optimized to do so) but they do not generalize well, i.e. their good objective
values do not carry over to other datasets. Therefore, objective values that were measured
on the dataset used in optimization are not the quantities of interest. Instead, objective
values measured with respect to unseen datasets are considered, i.e. the generalization
performance of the parameters is estimated. Techniques for doing so are summarized in
Section 3.9.1. These techniques can be applied in parameter tuning, aiding the selection
of parameters that generalize best. This process is also referred to as model selection, and
is the topic of Section 3.9.2. Generalization performance is furthermore important as an
estimate of the performance of the finally selected parameters, that reduces undue optimism,
cf. Section 3.9.3. An example of how these mechanisms for model selection and performance
estimation can be implemented is given for PAMONO data analysis. It belongs to the
experiment description and can thus be found in Section 7.3.4. Computation of the final
classifying model used in the pattern classifier depends on this implementation and is therefore
detailed in Section 7.3.5.

64 Chapter 3. The SynOpSis Approach

3.9.1 Generalization Performance

In machine learning, the term generalization performance refers to the quality a learned
predictive model attains in making predictions about unseen data. In a more general context,
it can be regarded as the results quality an algorithm attains for previously unseen input, given
a set of parameters. ‘Unseen input’ means that this input was not used in determination of
the parameters, eliminating the possibility of the parameters being overfitted to it. Note that
generalization performance does not relate to a specific performance metric: Any performance
metric can be used since the defining property of generalization performance is simply that the
metric is measured on previously unseen data. The goal of such measuring is reducing undue
optimism that would arise if quality was measured on the same dataset used in determining
parameters.

Various strategies for estimating generalization performance have been proposed in the
literature, many of which are summarized in [HTF09] for the context of machine learning.
The following list is not complete, but summarizes some of the most common strategies.
They all share the idea of disjointly dividing a given ground truth-annotated dataset into a
training set, used as input to train/optimize the algorithm upon, and a test set, used solely
for estimating generalization performance. Presentation of all strategies follows the work by
Kohavi [Koh95].

• Holdout simply divides the annotated data by sampling without replacement a training
set from it and using the complement as the test set. Typically, the training set comprises
2
3 of the overall data.

• Random subsampling is also known as repeated holdout: The holdout strategy is
repeated K times with different random samples. This enables computation of e.g. the
mean generalization performance and its standard deviation, thus providing a measure
of confidence.

• Bootstrap sampling constructs a training set of size N by sampling with replacement
from the original dataset, also of size N . The data items not used in the training
(multi-)set are used as the test set. Like in random subsampling, this is repeated K
times.

• K-fold cross-validation partitions the original data into K subsets of approximately
equal size. The algorithm is trained/optimized K times, each time using another of
the subsets as test set and the union of the remaining K − 1 sets for training. Mean
and standard deviation of estimated generalization performance can be computed over
the K folds. For classification algorithms, bias and variance of this estimate can be
improved in most real-world tasks [Koh95], by creating the K subsets with stratified
sampling. This means the data is sampled such that the label proportions in each subset
are approximately equal to the label proportion in the original dataset. Stratification
can also be applied in the previously listed methods. If the K in K-fold cross-validation
equals the size N of the input dataset, the procedure is referred to as leave-one-out
cross-validation.

Any of these methods can be used as the strategy for generating the training and test sets
that are required for the model selection, respectively performance estimation procedures
presented in the next two sections.

3.9. Model Selection and Performance Estimation 65

Complexity of Classifying Model

P
re

d
ic

ti
o
n

E
rr

o
r

Training

Test

Low High

Optimum

Generalization

Performance

Figure 3.10: Generalization Performance over Complexity of Classifying Model. Prediction error
incurred on the training set monotonously decreases with increasing complexity of the classifying
model because more complex models can overfit the training data more, fully memorizing them
in the extreme case. Test set error exhibits a minimum at a certain complexity. Increasing
complexity beyond that minimum creates models that capture spurious peculiarities of the
training set that do not generalize to the test set. Model selection for classifying models aims
at finding the parameters producing the classifying model with optimum complexity. Figure
adapted from [HTF09].

3.9.2 Model Selection

‘Model selection’ is a term that originates in statistics and machine learning, where it denotes
the selection of a statistical/predictive model from a set of candidate models [HTF09]. The
underlying technique of estimating generalization performance to avoid overfitting the training
data is as well beneficial and applicable in optimizing algorithmic parameters. For this context,
the term ‘model’ in ‘model selection’ can be regarded as denoting a parameter set configuring
an algorithm.

While this term at first sight appears oddly defined, it maintains consistency with machine
learning terminology, where optimization of the parameters of learning algorithms is typically
carried out via model selection: A parametric learning algorithm is used to create a set
of candidate predictive models, given a set of training data and varying parameter sets.
Model selection then means selecting that parameter set which exhibits the best estimated
generalization performance on the test set. This parameter set is then used to learn the
final predictive model from the entire available data (training and test set). Therefore, in
this context, the entity that is selected during model selection is a parameter set configuring
an algorithm, and this concept can be transferred to optimizing parameter sets of other
algorithms, e.g. the pattern detector used in SynOpSis.

The key purpose of model selection lies in reducing the risk of overfitting the training
data by selecting a model with respect to estimates of its generalization performance. This is
beneficial in any parameter optimization task. Optimizing the parameters of a supervised

66 Chapter 3. The SynOpSis Approach

classifier, however, provides a very intuitive notion of the merit of model selection, which will
be presented now as an example. In this context it is important to strictly distinguish between
the model, defined as the parameter set of the supervised classifier, and the classifying model,
defined as the predictive model obtained by running the learning procedure of the supervised
classifier, using training data and the given parameter set as inputs, cf. also Figure 3.5.
The parameter set of a supervised classifier controls, amongst others, the complexity of
the resulting classifying model and thus its ability to overfit the training data: The more
complex the classifying model, the more training data it can memorize. One extreme example
is k-Nearest Neighbors (k-NN) [HTF09] for k = 1, where the classifying model consists of
all training data points (lazy learning), and each new point is predicted to belong to the
class of its nearest neighbor in the training set. When applied to the training set itself,
this classifying model yields perfect results and constitutes a worst case of overfitting. Less
complex classifying models must abstract further from the training data which is usually
beneficial for generalization performance. Figure 3.10 demonstrates this: Prediction error for
the training set monotonously decreases with increasing complexity of the classifying model,
while for the test set, there is an optimum point. The divergence of the curves demonstrates
that training error underestimates test error, especially after complexity increases beyond the
optimum point. Model selection aims at finding the parameters producing the classifying
model with the complexity that optimizes generalization performance. For these parameters,
the classifying model abstracts far enough from the training set to generalize well, but not as
far as to become too simplistic to capture the concepts in the data.

While being demonstrated here for parameters of supervised classifiers, like the pattern
classifier in SynOpSis, the phenomenon of overfitting parameters to the training data applies
to optimizing its pattern detector as well: In this context, parameters can overfit the training
data by adapting specifically to spurious peculiarities in the training set that do not appear
in the test set and hence do not generalize. Here the relation to complexity is less obvious
than in classifying models, but it still exists: For example if a parameter needs to have a
certain value to work well on the training set, but is irrelevant for test set performance, then
a parameter set with that specific value can be considered more complex than one with any
different value. Algorithms with more parameters allow for more such cases and generally
for more overfitting, making model selection more important, the more parameters are to be
optimized.

Summing up, model selection for supervised classifiers and other algorithms optimizing
a loss function with respect to ground truth-annotated data is carried out as follows: The
available ground truth-annotated input data is divided into training and test sets, using e.g.
one of the division strategies presented in the previous section. A set of candidate models,
i.e. parameter sets, is created by optimizing the loss function on the training data. For each
such model, its generalization performance in the measures of interest (e.g. Recall, Precision,
. . .) is estimated with respect to test data, each measure yielding either a single value (e.g.
holdout), or a mean and its standard deviation (e.g. random subsampling, bootstrap, cross-
validation). Each measure assigns an estimated generalization performance to a parameter
set, similar to the test curve in Figure 3.10, but without subsuming the parameter space
in a single complexity axis. Model selection then outputs the parameter set yielding the
optimum estimated generalization performance, i.e. the best test set performance. In case of
multiple performance measures, the desirability approach from Section 3.8 can be used to
obtain a single combined measure, thus resolving Pareto-incomparability. By being computed

3.9. Model Selection and Performance Estimation 67

on data not used in parameter optimization, the obtained measures do not involve the undue
optimism that would be caused by measuring on training data, cf. the training curve in
Figure 3.10. Therefore, model selection yields a model that generalizes well to unseen data,
instead of selecting the one that best (over)fits the training data.

3.9.3 Performance Estimation

Performance estimation, also denoted as ‘model assessment’ [HTF09], denotes the process of
estimating the performance a model will attain, when used on the original data which it is
supposed to handle. Performance estimation without prior model selection can simply be
done analogously to model selection, by estimating generalization performance, e.g. with one
of the strategies from Section 3.9.1. The only difference is that in performance estimation,
this process needs to be run only once, because there is only one model.

Performance estimation with prior model selection is slightly more complex, for the
following reason: Generalization performance of the finally selected model as computed
during model selection should not be taken as an estimate of the performance that model
attains on further unseen data because the model was selected to optimize performance on this
test set. This act of selection is again an optimization, just like the optimization that created
the candidate models for model selection. Hence the situation is exactly the same as in model
selection, taken one tier higher: The generalization performance computed in model selection
is an unduly optimistic estimate of generalization performance with respect to further unseen
data. The optimism arises because selecting a model with respect to performance attained on
a certain dataset, constitutes a transfer of information about that dataset, encoded in model
choice: The model/parameters are selected as to optimize performance on that dataset and
thus form a channel for information transfer. This observation is due to Scheffer and Herbrich
[SH97] (cf. their Figure 1) and was made in the context of machine learning algorithms. The
issue, however, affects any scenario of model selection for parameter tuning, followed by
performance estimation. The effect aggravates, the more parameters there are to be tuned
because increasing numbers of parameters “widen the channel” across which the information
transfer can occur. For example in PAMONO data analysis this is particularly severe because
the detector alone has 28 parameters to be tuned, cf. Section 5.7.

As for being an iterated version of the issue that was already encountered in model
selection, the same methods can be applied for resolving it: Again, generalization performance
should be measured, but this time with respect to the process including model selection.
This introduces the need for a further dataset that is disjoint to the datasets used in training
and model selection. Following Hastie, Tibshirani, and Friedman [HTF09], the following
terminology is used:

Terminology 3.3. The training set denotes the data used as input in optimizing the
parameter set of an algorithm. The validation set denotes the data used in model selection,
i.e. in choosing the parameters to be finally used. The test set denotes the data used in
performance estimation, i.e. in estimating how well the finally selected parameter set will
perform on further unseen data.

Note that this definition of the term ‘test set’ contrasts with the typical usage of the term
in the context of model selection. Again, data division into these sets can be carried out using
e.g. one of the strategies in Section 3.9.1. Conducting performance estimation after model

68 Chapter 3. The SynOpSis Approach

selection, by computing generalization performance with respect to the previously untouched
test set, avoids incurring the undue optimism described by Scheffer and Herbrich [SH97].

As can be seen from this and the previous section, model selection and performance
estimation exhibit a number of design choices, that should be taken in consideration of the
intended application scenario. The design choices are e.g. data division strategy and number
of repetitions or folds, if applicable. This needs to be done for both, model selection and
performance estimation. For PAMONO data analysis using SynOpSis, the design choices
are explained in the experiment description in Section 7.3.4. As computation of the final
classifying model depends on these choices, it is described after that, in Section 7.3.5.

3.10 Summary of SynOpSis and Application Stage

The Application stage is the last stage of SynOpSis and is illustrated at the bottom of
Figure 3.2. In contrast to the offline Synthesis stage and Optimization stage, it can be
executed in real-time, provided its components support this. The pattern detector, feature
extraction and pattern classifier used in the context of PAMONO data analysis are real-time
capable [LST+13a; LST+13b], cf. Section 7.5.8.

The following description will very briefly recap the way from optimizing parameters to
applying them to the real sensor input data, along the flow of data in Figure 3.2. References to
the sections that contain the respective details are given in footnotes. Two types of references
are distinguished: SynOpSis references provide abstract and general depictions of methods
used in SynOpSis, while PAMONO references describe concrete and application-specific
implementations of the respective methods, as they are used in PAMONO data analysis.

After the Synthesis stage23 generated ground truth-annotated data, the Optimization
stage24 finds a Pareto front of non-dominated parameter sets for the pattern detector25 and
classifier26, using a Multi-Objective Genetic Algorithm (MOGA)27. A model selection28 with
respect to an unseen validation set is conducted to pick the final parameter set for detector
and classifier from the Pareto front. Pareto-incomparability of objective vectors measured
during model selection is resolved using Desirability Indices (DIs)29. Performance estimation30

for the finally chosen parameters is carried out with respect to an unseen test set.
After the final parameters have been determined, they are passed as inputs to the

Application stage, as illustrated in Figure 3.2. Here they are used in analyzing the real
sensor input data, which is done the same way as the synthetic data was analyzed during the
Optimization stage. Therefore, the Application stage is implemented simply by replicating
a subset of the Optimization stage, as can be seen from comparing the Application stage
to the top row of the Optimization stage in Figure 3.2. Now, the pattern detector is run
on the real sensor input data, using its optimized parameter set. The output consists
of unclassified patterns from which features are extracted for classification. The feature-

23SynOpSis: Section 3.4, PAMONO: Chapter 4
24SynOpSis: Section 3.7, PAMONO: Section 7.3.2
25SynOpSis: Section 3.5, PAMONO: Chapter 5
26SynOpSis: Section 3.6, PAMONO: Chapter 6
27SynOpSis: Section 3.7.4, PAMONO: Section 7.3.2
28SynOpSis: Section 3.9.2, PAMONO: Section 7.3.4
29SynOpSis: Section 3.8, PAMONO: Section 7.3.3
30SynOpSis: Section 3.9.3, PAMONO: Section 7.3.4

3.10. Summary of SynOpSis and Application Stage 69

annotated patterns are passed to the pattern classifier, which applies a classifying model31 that
was learned beforehand, given the optimized classifier parameters and using the entire available
ground truth-annotated data for training (the entire available ground truth-annotated data is
constituted by the synthetic training, validation and test set; as the classifying model does not
depend on any of the inputs of the Application stage, it can be learned beforehand to attain
real-time-capability). The classifying model is applied to classify the patterns detected in the
real data, and the classified patterns are output by the Application stage. Estimates of the
quality of this detection and classification result are output during performance estimation.

31SynOpSis: Section 3.6, PAMONO: Section 7.3.5

Chapter 4

Synthesis Stage for PAMONO

Contents
4.1 Introduction . 71
4.2 A Signal Model for the PAMONO Sensor 73
4.3 Applying the Model . 75

4.3.1 Experimental Protocol . 76
4.3.2 Computation . 77

4.4 Conclusion . 78

As discussed in Chapter 3, synthesis is a crucial component of SynOpSis. While Section 3.4
abstractly discussed the properties required for a signal model to be used in synthesis, and the
role of synthesis in SynOpSis, this chapter concretely describes how to generate synthetic data
in the context of the PAMONO sensor. After the introduction with a discussion of related
work in Section 4.1, a signal model for PAMONO is proposed in Section 4.2. Application
of this model is discussed in Section 4.3, involving a specialized experimental protocol for
PAMONO measurements in Section 4.3.1, and the computation of synthetic PAMONO
imagery in Section 4.3.2. Conclusions are drawn in Section 4.4. The depictions given in the
entire chapter are a more detailed version of the work in [SLW+14], embedding it into the
context of a more advanced version of SynOpSis than was used in that paper.

4.1 Introduction

Including a Synthesis stage in the SynOpSis approach enables it to benefit from ready
availability of large amounts of ground truth detection and classification results, to be used
as training data in the Optimization stage, as well as for model selection and performance
estimation. Being able to generate large amounts of ground truth fast and with little manual
effort, enables keeping the datasets used in each of these three contexts disjoint, which avoids
overfitting and optimism in the results. Ground truth-annotated synthetic data can be easily
produced without the need for a user to manually segment and classify this large amount
of data: A small set of exemplary patterns suffices to seed synthesis. Details on the data
division strategy for creating multiple disjoint datasets for optimization, model selection and
performance estimation are covered in the experiment description in Section 7.3.4, while
this chapter presents the signal model in general, cf. Section 4.2, along with a procedure for
generating one synthetic dataset, cf. Section 4.3.

As this procedure implements the abstract Synthesis stage from Figure 3.2, its output
accordingly consists of synthetic images, annotated with ground truth pattern locations and
their ground truth classification. For the concrete PAMONO scenario, this Synthesis stage

71

72 Chapter 4. Synthesis Stage for PAMONO

is resolved in more detail in Figure 4.2, which is explained throughout this chapter. The
PAMONO application is about detecting patterns in the data and classifying them as being
or not being related to nano-objects attaching to the sensor surface. Knowing ground truth
pattern locations and their classification serves to make the objective functions1 used in the
Optimization stage2 automatically evaluable, allowing to assess the quality of the algorithmic
parameters undergoing optimization. This way, the parameters can automatically adapt to
changing experimental setups of the PAMONO sensor, and an according classifying model
can be learned. Furthermore, generalization performance can be automatically estimated in
the context of model selection and performance estimation3.

The amount of manual segmentation effort required for initializing the Synthesis stage
is considerably smaller than for manually producing a sufficient amount of ground truth-
annotated real data, as required e.g. by [HBR+08; PKC09; HBR+12]. Han et al. [HBR+08]
require about 500 to 1300 examples per class for training a supervised classifier, while synthesis
in SynOpSis requires only a few4 representative target pattern examples. These suffice to
synthesize much larger ground truth-annotated datasets.

Related Work

Physical simulation of the processes interacting with a sensor, along with simulation of
the sensor itself provides a way of creating ground truth-annotated synthetic sensor data.
An example from this category is the work by Majumdar et al. [MMB+05], who use Monte
Carlo (MC) physics simulations to create training data for distinguishing γ-ray-initiated
atmospheric light showers from those caused by hadrons. This involves, amongst others,
simulating both kinds of light showers, light scattering in the atmosphere as the medium, and
simulating the mirrors and photomultiplier electronics of the so-called Major Atmospheric
Gamma Imaging Cherenkov Telescopes (MAGIC), which are the employed sensors.

A physical simulation-based method closer to the PAMONO context is presented in the
work by Wang et al. [WSP+10]: Their field of application is a sensor similar to PAMONO
and as well capable of detecting biological viruses. Synthesis of the sensor signal is carried
out by simulating wave propagation on the sensor surface using the COMSOL Multiphysics
software [COM15]. This simulation provides idealized appearances of the viruses on the
surface, and it does not capture adverse effects like noise, artifacts and background signal.
Hence the simulated data can not be used in optimizing a detector or training a classifying
model for real data.

Real-data-based synthesis is an approach capable of capturing adverse components
corrupting sensor signals. For example Learned-Miller [Lea06] creates generative image
models by firstly transforming a set of input images (e.g. handwritten digits) such as to
remove affine variability between them, and then modeling the latent (wanted) images and
the remaining variability (nuisance variables) separately, which can be used to synthesize new
data for training. Corruptive signal components can not only be captured and generated, but
also analyzed in terms of the nuisance variables that are part of the signal model.

1Detector objectives are listed in Section 3.5.2, classifier objectives are listed in Section 3.6.2.
2The Optimization stage is described in Section 3.7.
3Both are explained in Section 3.9.
4In the evaluation in the context of PAMONO, 20 target patterns were manually segmented for each

synthetic dataset, cf. Section 7.3.4.

4.2. A Signal Model for the PAMONO Sensor 73

Shotton et al. [SSK+13] utilize computer graphics to render synthetic depth images
mimicking those captured by the Microsoft® Kinect® sensor [Zha12]. These are used as
training data for human body part labeling in the context of human pose recognition. Real
data enters into this process in terms of motion capture data, aimed at covering the diverse
range of human poses. They report that learning from synthetic training data provides high
accuracy on real test data in their application case. Furthermore, they found that having large
amounts of training data (cheaply available via synthesis) is the decisive factor in attaining
this high accuracy.

The model for the PAMONO sensor as presented now [SLW+14] aims at delivering similar
benefits to PAMONO data analysis. It uses physical modeling only on a high level, describing
image formation on the sensor in terms of signal components and their composition, cf.
Section 4.2. Computation of synthetic imagery is, however, driven by real sensor data,
ensuring that the output data captures even small changes in the physical parameters of the
sensor setup, cf. Section 4.3.

4.2 A Signal Model for the PAMONO Sensor

Image formation on the Charge-Coupled Device (CCD) sensor in PAMONO (cf. Figure 2.2
for the sensor setup) can be modeled by regarding the involved signal components and their
composition. For being a time series of images, PAMONO data is a spatiotemporal signal with
two spatial dimensions x, y and one temporal dimension t. It is composed of a background
signal B, the target patterns signal T caused by nano-objects attaching to the sensor surface,
an artifacts signal A with nuisance structures, and sensor noise N . Signal composition is
modeled by the following equation [SLW+14]:

I(x, y, t) = B(x, y) ⋅ (T ⋅A)(x, y, t) +N(x, y, t). (4.1)

I is the spatiotemporal intensity signal as recorded by the CCD sensor, cf. Figure 4.1a for an
example. The intensities in I are dominated to a large extent by the background component
B, which remains constant over time and is thus only indexed by (x, y). B is an image of the
gold surface of the sensor, along with interference patterns arising there, both of which do
not change within one measurement.

The desired signal of the measurement is the target patterns signal T , which is multiplied
with B. The target patterns in T are due to the nano-object adhesions to the sensor surface
and serve as their indirect proof. Every signal component other than T is an impediment to
the analysis process. T disperses with low amplitudes around 1, i.e. around the neutral element
of multiplication. In lighter areas like those affected by the upward step functions5 in the
central part of a nano-object adhesion, T is greater than 1. In darker areas like the downward
step functions in the outer part of a nano-object adhesion, T is smaller than 1. Multiplicative
composition of the target patterns signal T with the background B models the proportionality
between the magnitude of the Surface Plasmon Resonance (SPR)-based effects causing T and
the local intensity observed in B, cf. Equation (3) in [ZSS+17]. This proportionality means

5The role of step functions in PAMONO images as an indirect proof for the adhesion of a nano-object to
the sensor surface was explained in more detail in the context of the physics behind the PAMONO sensor, cf.
Section 2.2.

74 Chapter 4. Synthesis Stage for PAMONO

(a) Real Sensor Image I ≈ B (b) Real Target Patterns and Artifacts T ⋅A ⋅ 30

(c) Real Artifacts A ⋅ 30 (d) Synthetic T ⋅A ⋅ 30

Figure 4.1: Components of the PAMONO Signal Model – Illustration. Examples for the compo-
nents of Equation (4.1) are shown. (a) is a real image I as measured by the PAMONO sensor.
It approximately equals the background component B which dominates the intensities of I.
(b) shows the same real image, after approximate removal of the background B and noise N ,
leaving the product of the target patterns component T with the artifacts component A. Three
nano-object adhesions in T are revealed, corrupted by wave-like artifacts in A and residual noise.
For comparison, (c) shows a real image of only the artifacts A and residual noise, without any
target patterns. (d) show the same components as (b), i.e. target patterns, artifacts and residual
noise. The difference is that (b) shows real data, while (d) was created synthetically, using the
signal model from Equation (4.1). Note that the signals in (b)–(d) were amplified by a factor of
30 in comparison to (a), cf. text for more details.

that, with all other things held constant, the SPR effect has lower amplitude for nano-objects
attaching in areas of darker background B, than for those attaching in areas of brighter
background B. Dividing by B to eliminate the multiplicative influence of the background (cf.
Section 5.2) reveals the linear relationship between nano-object diameter and signal intensity,
cf. Figure 4c in [ZKG+10].

The artifacts signal A shares the multiplicative nature of T because it is due to the same
physical effect (SPR). Its intensity range also disperses with low amplitudes around the neutral
element 1 of multiplication. However, the artifacts in A are an undesired nuisance signal,
containing everything impeding nano-object detection. This also includes any departure of the
background signal B from the constancy assumption. Figure 4.1b shows an approximation to
the product T ⋅A, obtained by applying background elimination (to remove B, cf. Section 5.2)
and denoising (to remove the noise N , cf. Section 5.3) to the real sensor image I from
Figure 4.1a. Doing so reveals three nano-object adhesions as part of T , corrupted by wave-like

4.3. Applying the Model 75

artifacts as part of A, plus residual noise that survived the denoising procedure. Note that
the intensity dominance of B in I is strong enough to render the T ⋅A signal from Figure 4.1b
visually imperceptible in Figure 4.1a. Or stated the other way around: The effect of amplitude
change exerted by the T ⋅A factor on the background signal B is considerably smaller than
B itself. Therefore, signal intensities in Figure 4.1b have been amplified by a factor of 30
in comparison to Figure 4.1a, for visualization purposes. The low amplitude of the desired
signal T is the reason why using a 12-bit CCD is crucial for PAMONO: As the desired signal
resides in the lesser significant bits, a high resolution intensity range is required to avoid
its falling victim to quantization. Figure 4.1c (also amplified by factor 30 in comparison
to Figure 4.1a) shows only the artifacts component A and the residual noise, without any
target patterns. The image was recorded before any nano-objects were inserted into the flow
cell of the sensor. This artifacts signal is the main source of False Positive (FP) detector
responses. Separating T from A on the pixel level is an ill-posed inverse problem because
only an estimate of their product is available for real data. These two facts in conjunction
motivate using the pattern classifier in Chapter 6, which separates T from A on the pattern
level, by classifying patterns as being caused by either T (target) or A (non-target), using
local intensity-, shape- and other statistical features.

The noise component N in Equation (4.1) is modeled additively because it mainly consists
of the additive Gaussian readout noise incurred by the CCD [FM06]. Besides that, there
is signal-dependent shot noise arising from photon statistics [BB00], which is not modeled
separately because the amount of available light is a controllable physical sensor parameter,
and it is always selected to be large enough to make shot noise negligible, cf. the “Diode
(Light Source)” caption in Section 7.2.1. The nature of the noise is assumed constant over
time because Gaussian readout noise depends on the CCD settings, and shot noise depends
on the available light, both of which are kept constant within one measurement.

Finally, Figure 4.1d (also amplified by factor 30 in comparison to Figure 4.1a) shows
synthetic data, obtained by applying the signal model from Equation (4.1) as according to
the subsequent Section 4.3. Like with Figure 4.1b, the background B and noise N were
suppressed to obtain an approximation of T ⋅A. This reveals four nano-object adhesions,
along with artifacts similar to those in Figure 4.1b, demonstrating the capability of the model
to mimic real data.

4.3 Applying the Model

The central requirement for synthetic data in SynOpSis is its ability to capture the properties
of real sensor data with regard to two tasks: Firstly, algorithmic parameters that work
well on the synthetic data should also work well on the real data. Secondly, a classifying
model learned from synthetic data should generalize well to real data. One way of obtaining
such synthetic data is to let real data drive the synthesis process, as will be described now.
The components of the signal model from Equation (4.1) are captured as explained in the
experimental protocol in Section 4.3.1 and assembled to form the final synthetic signal, as
described in Section 4.3.2.

76 Chapter 4. Synthesis Stage for PAMONO

Synthesis Stage

Input

Done Manually

Archetypes
MeasurementS
B ∙ � ∙ � + �

Background
EliminationS

andSAveraging

� ∙ �
Estimate

Archetypes
ofS�

Background
MeasurementS
B ∙ � +�

DistributionSin
BackgroundS

Measurement

PAMONOS
Sensor

ArchetypesS
Segmentation

SyntheticS
SignalS�

SignalSModel

Output

SyntheticS
Images

GroundSTruth
Patterns

GroundSTruth
Classification

~

Figure 4.2: Synthesis Stage for PAMONO. A background measurement provides a real signal B ⋅A+N ,
composed of background B, artifacts A and noise N . This measurement is done before any
nano-objects have been inserted to the flow cell of the PAMONO sensor. After that, a positive
sample of nano-objects is inserted, and an archetypes measurement is conducted, yielding
archetypal target patterns which are manually segmented by the user. From these, a synthetic
target patterns signal T̃ is generated, for which ground truth is known. T̃ is combined with
the background measurement as according to the signal model from Equation (4.1), and the
synthetic images, along with the ground truth constitute the output of the Synthesis stage.

4.3.1 Experimental Protocol

Computation of the PAMONO signal model from Equation (4.1) builds on four components
to create a synthetic time series of sensor images I. These are determined using real empirical
data. Three of the four components, namely background B, artifacts A and noise N can be
measured in composition, by letting the sensor record a series IT=1 of images prior to inserting
the nano-objects sample into the flow cell. This corresponds to a target patterns signal T
that is constantly 1, as indicated by the superscript. The resulting time series of images and
the act of recording it is in the following denoted as the background measurement.

Empirical data for the fourth component, namely the target patterns signal T , can be
approximated by the following procedure: After the background measurement has been done,
a positive sample of the nano-objects to be detected is injected into the flow cell of the sensor.
The resulting signal and the act of recording it is called the archetypes measurement. It
serves to determine archetypal instances of target patterns that are used in creating a synthetic
target patterns signal T̃ . Determining target pattern archetypes is done interactively: The
user manually segments a small, representative amount of exemplary target patterns, i.e.
nano-object adhesions, in the archetypes measurement, by delineating them with polygons.
To enable this, the background must be eliminated and noise removed, which is done by
applying the averaging background elimination technique from Section 5.2.1 which is briefly
summarized here, stating the concrete parameters that are suitable in segmenting archetypes
for synthesis: An estimate of the time-dependent, low-amplitude T ⋅ A components in I

is computed by removing the temporally constant background B and the time-dependent
noise N . This is done by sliding two windows along the temporal axis. Each window is 40
images long, and the windows are 20 images apart. The average of the images in the “earlier”
window is taken as an estimate of the constant background (incorporating earlier temporally
variant information), while the average of the “later” window is taken as an estimate of the
temporally variant T ⋅A component, multiplied with the constant background. The T ⋅A
estimate is extracted by dividing the later average by the earlier one, revealing the changes
that occurred since then. Note that averaging 40 images in both windows eliminates much
of the noise component N , thus the additional denoising techniques from Section 5.3 are
not applied in preparing images for archetype segmentation. To make the T ⋅A estimate

4.3. Applying the Model 77

discernible for the user, it is amplified by a user-selectable factor, making the result look e.g.
like Figure 4.1b. In this type of data, the user manually segments a small and representative
amount of archetypal target patterns. This manual segmentation spatially separates T from
the artifacts A, and the obtained target pattern archetypes are used in creating a synthetic
target patterns signal T̃ . In order to do so, the representation of an archetype consists
not only of the polygon segmented by the user, but also of the local intensities in the T ⋅A
estimate, that are observed in and around that polygon. These intensities do not undergo any
amplification because they are utilized in synthesizing T̃ , as described in the next section.

Note that unlike the target patterns signal T , the artifacts signal A can not be captured
adequately by archetypes due to its very diverse nature: Any structure in the data that is
not a target pattern may be regarded as an artifact. Therefore it is more efficient to identify
artifacts as “not being a target pattern”, by comparing ground truth target patterns to
detector results as described in Section 5.8. This also saves the need for manual segmentation
of artifacts.

Summarizing the procedures above and embedding them into the SynOpSis workflow
from Figure 3.2, the experimental protocol for conducting a run of multiple PAMONO
measurements with a new sensor setup is as follows:

1. A background measurement is conducted by running the sensor before any nano-objects
have been inserted into the flow cell. This yields IT=1 = B ⋅A +N , i.e. real background,
artifacts and noise. The target pattern component T is neutral, i.e. constantly 1. The
background measurement occupies the top row in Figure 4.2.

2. An archetypes measurement is recorded after a first positive sample with the nano-
objects to be detected has been inserted into the flow cell of the sensor. Background
elimination yields an estimate of T ⋅ A, like in Figure 4.1b, and the user manually
segments archetypal target patterns. This process occupies the left side of the bottom
row in Figure 4.2.

3. Synthesis assembles the background measurement with the archetypal target patterns
via the signal model from Equation (4.1) and outputs synthetic images, along with
ground truth pattern locations and classification, which is described in detail in the
following Section 4.3.2 and schematically visualized in the remainder of Figure 4.2.

4. The Optimization stage and the rest of the offline part of SynOpSis are carried out, cf.
top part of Figure 3.2.

5. Utilizing the algorithmic parameters and the classifying model determined in the offline
part, the PAMONO measurement runs of interest are conducted. The measured data
is analyzed in real-time via the Application stage in the bottom part of Figure 3.2, as
described in Section 3.10. This can be done until experimental conditions change again,
after which a new run of this protocol might be required in order to ensure optimized
quality of analysis results.

4.3.2 Computation

After the background and archetypes measurement and the manual segmentation of archetypal
target patterns (steps 1 and 2 of the experimental protocol in the previous section) have been
conducted, all data required for computing synthesis is available. The pivotal point for this
computation is the signal model from Equation (4.1). Before applying it, a synthetic target
patterns signal T̃ with known ground truth must be generated, which is done as follows:

78 Chapter 4. Synthesis Stage for PAMONO

Uniformly random draws with replacement from the set of manually segmented archetypes
are conducted, and each such archetype is placed at a uniformly random spatiotemporal
location in the domain (x, y, t) of the background measurement IT=1. This is done until
the desired density of target patterns has been reached. Placing an archetype at position
(xc, yc, tc) in the domain of IT=1 means that the centroid of its manually segmented polygon
is placed at coordinate (xc, yc, tc) in a volume of ones, the size of IT=1. Then the intensities of
the archetype, which disperse with low amplitudes around 1, are multiplied with that volume,
at their respective locations around (xc, yc, tc). This is repeated for all subsequent images
in the volume, i.e. for all t > tc because once a nano-object attaches to the sensor surface,
it remains fixated there, and its appearance does not change. In multiplying the intensities
with the volume, a feathering-like weighting [Sze06] is applied to fade out intensities outside
the segmented polygon, while its insides are kept as they are. Then the next archetype is
multiplied with the same volume, until it is filled with target patterns at the desired density.
The resulting volume is the synthetic target patterns signal T̃ , for which ground truth is known
in terms of the manually segmented polygons at their randomly drawn positions. T̃ is then
multiplied with the background measurement IT=1, corrupting target patterns originating
from the same archetype with different background, artifacts and noise, thus increasing
variation. This composition yields the synthetic image sequence Ĩ with nano-objects at known
locations and no other nano-objects because IT=1 contains none. The entire process described
here occupies the right part of the scheme in Figure 4.2.

Note that multiplying IT=1 with T̃ means multiplying T̃ with the two summands consti-
tuting IT=1, as according to Equation (4.1). In the first summand, T̃ assumes the role of
the target patterns signal T in full agreement with the equation: T̃ is multiplied with the
undesired artifacts component A and with the temporally constant background signal B.
However, the noise summand N will also be multiplied with T̃ , hence violating the model.
This is ignored because it is negligible for two reasons: firstly because T̃ disperses around 1
with very low amplitudes and secondly because of the noise nature of N .

The result of this real-data-driven approximation to Equation (4.1) is a synthetic dataset
containing real background, artifacts and noise, along with archetypal synthetic target patterns
that are created from real data. It captures the appearance of fully real data, as can be seen
from comparing the real T ⋅A estimate in Figure 4.1b to the synthetic one in Figure 4.1d.
Incorporating a real artifacts signal renders the manual segmentation of archetypal artifacts
unnecessary because all detections that do not match a synthetic target pattern can be
considered as belonging to the non-target class caused by artifacts or noise. The synthetic
image sequence Ĩ, along with the ground truth target pattern locations and implicit two-class
classification are utilized by the remainder of SynOpSis.

4.4 Conclusion

A signal model for the PAMONO sensor was presented and computed using empirical data from
a specialized experimental protocol. Applying this signal model forwardly generates synthetic
PAMONO imagery, annotated with ground truth, which can be used to automatically evaluate
objective functions within SynOpSis. Applying the signal model backwardly, in this case by
making efforts to extract the signal of interest T from the observed composite signal I, provides
guidance for designing further processing steps. Specialized methods can be targeted at
handling the different components of I modeled in Equation (4.1): The background component

4.4. Conclusion 79

B is targeted within the pattern detector, by the background elimination techniques discussed
in Section 5.2. The noise component N is addressed by the denoising strategy presented in
Section 5.3, which is as well part of the detector. The separation of the target patterns in T
from the artifacts in A occurs on the pattern level and is the task of the pattern classifier
covered in Chapter 6.

Evaluation of the Synthesis stage for PAMONO is conducted by measuring how well the
algorithmic parameters and classifying model determined from synthetic data generalize to
the real data to be analyzed. As a consequence, this evaluation relies on the full SynOpSis
approach, including the pattern detector and classifier. It is thus given in the overall evaluation
of SynOpSis in Chapter 7, after the pattern detector and classifier have been presented. The
cross-validation strategy in which SynOpSis is run also encompasses the Synthesis stage.
Details on how synthesis is applied within cross-validation can be found in Section 7.3.4,
describing the experimental settings relating to cross-validation.

Chapter 5

Pattern Detector for PAMONO

Contents
5.1 Introduction . 82
5.2 Background Elimination . 84

5.2.1 Averaging Background Elimination . 85
5.2.2 Median Background Elimination . 88
5.2.3 Step Responses of Background Elimination Techniques 88
5.2.4 Parameters . 90

5.3 Denoising . 90
5.3.1 Spatial Denoising Techniques . 92
5.3.2 Fuzzy Spatiotemporal Denoising . 95
5.3.3 Application-Specific Cleaning Heuristics 98
5.3.4 Parameters . 99

5.4 Time Series Classification via Fuzzy Template Matching 100
5.4.1 Time Series Preselection . 101
5.4.2 Matching Score . 102
5.4.3 Fuzzy Time Series Classification . 104
5.4.4 Parameters . 106

5.5 Time Series Classification via Translation-Invariant (TI) Wavelet
Features . 107

5.5.1 Translation-Invariant Feature Extraction 110
5.5.2 Feature Ranking and Selection . 112
5.5.3 Condensed k-NN Using Fast Coreset Clustering 113
5.5.4 Performance . 115
5.5.5 Comparison to Fuzzy Template Matching 123
5.5.6 Conclusion . 125

5.6 Segmentation . 127
5.6.1 Preprocessing on the Pixel-Level . 128
5.6.2 Aggregating Pixels to Polygons . 129
5.6.3 Postprocessing on the Polygon-Level . 131
5.6.4 Parameters . 132

5.7 Parameters of the Detector . 133
5.8 Matching and Labeling . 135
5.9 Conclusion . 138

81

82 Chapter 5. Pattern Detector for PAMONO

As depicted in Figure 3.1, the task of finding nano-objects in a given time series of
PAMONO sensor images is divided into a detection and a classification part. The pattern
detector to be presented in this chapter is a concrete realization of the abstract pattern detector
displayed in Figure 3.3. It has been developed specifically for the PAMONO application
scenario and exhibits the same interface in terms of input and output as the abstract pattern
detector. Therefore it can implement the two instances of the pattern detector in the SynOpSis
overview, depicted in Figure 3.2.

This PAMONO pattern detector is real-time-capable and runs on the Graphics Processing
Unit (GPU). As discussed in the context of the abstract pattern detector in Section 3.5, one
of the goals of detection is not missing any target patterns in the data, i.e. not missing any
nano-objects attaching to the sensor surface in the context of PAMONO. This goal is pursued
by using Recall as one objective in optimizing detector parameters. Doing so comes at the
possible cost of incurring many spurious detector responses, i.e. detections of non-target
patterns. These are sorted out later, by the pattern classifier to be presented in Chapter 6.
Hence the patterns output by the detector are to be regarded as candidates for being caused
by actual nano-objects attaching to the sensor surface.

The central challenges arising in finding all such candidates are due to the adverse
properties of the time series of input images provided by the PAMONO sensor (cf. Section 4.2):
The low amplitude desired signal caused by the target patterns is modulated upon an
artifacts signal of similar amplitude and a background signal of considerably larger amplitude.
Additionally, there is the inevitable noise of recording. These challenges are addressed by
specific modules, which in total constitute the pattern detector.

After Section 5.1 provided an overview of these modules and of the pattern detector as a
whole, each module is presented in detail in Sections 5.2 to 5.6. Section 5.7 summarizes all
algorithmic parameters configuring the modules. These parameters are optimized within the
Optimization stage of SynOpSis with respect to the objectives listed in Section 3.5.2. In order
to do so, Section 5.8 describes a procedure enabling to evaluate the objective functions for
given parameter sets in an automatic fashion. This is done by matching synthetic ground
truth to detector results. Finally, Section 5.9 concludes the chapter and leads over to the
pattern classifier in Chapter 6.

5.1 Introduction

This section gives an overview of the pattern detector to be presented in the following sections.
In a basic version, this detector was described in [SWL+11] and [LST+13a], and it has
been heavily extended since then. Its extended version will be described in detail here,
including references to further publications as they are used. The detector is realized as a
real-time-capable streaming pipeline on the GPU. A schematic depiction of this pipeline
is given in Figure 5.1. The input stream consists of a time series of PAMONO images,
obtained either by synthesis (detector in Optimization stage in Figure 3.2) or from the sensor
(detector in Application stage in Figure 3.2). Its output are patterns represented as polygons,
delineating areas in the images that are candidates for being affected by nano-object adhesions.
Furthermore, a processed variant of the time series of input images is part of the output. From
these enhanced images, intensity-based local features are extracted that serve in classifying

5.1. Introduction 83

Pattern Detector

Input

Real/Synth.f
Images

� ∙ � ∙ � +�

Output

Parameters Segmentation
Backgroundf
Elimination

Denoising
TimefSeriesf

Classification

Patternsfasf
Polygonsfandf

Imagesfforf
Featuref

Extraction
BinaryfClassf

Mask
� ∙ �

Estimate
� ∙ � +�
Estimate

Figure 5.1: Pattern Detector for PAMONO. A concrete version of the abstract pattern detector from
Figure 3.3 is shown that has been specifically designed for PAMONO data analysis. It takes
real/synthetic images as its input, along with a parameter set configuring the algorithms in the
parametric pipeline constituting the detector. Background elimination and denoising remove the
constant background B and the noise N from the input signal, resulting in the product T ⋅A of
target patterns T and artifacts signals A. Time series classification identifies salient coordinates
in T ⋅A, which are aggregated to polygons within segmentation. These polygons are the output
patterns and are candidates for delineating areas affected by a nano-object adhesion. Furthermore
the T ⋅A signal is part of the output as it serves as the basis for extracting intensity-based local
features from the areas covered by the polygons, cf. Section 6.2. These features are used in a
subsequent classification step to sort out False Positive (FP) detector responses, cf. Chapter 6.

the output polygons as being related either to target patterns (nano-objects) or to non-target
patterns (artifacts), cf. Section 6.2.

In the following depiction of the four modules of the pattern detector in Figure 5.1, the
input time series of images is denoted as I. This I is a placeholder for both, synthetic
and real input, which also holds for the signal components of which I consists, as modeled
by Equation (4.1). For convenience and due to their frequent use in this chapter, these
components are briefly summarized here: A PAMONO measurement I is composed as
I = B ⋅ T ⋅A +N , consisting of

B, the background component modeled as being constant over time, exhibiting intensities
that dominate all other components,

T , the low amplitude target patterns signal that is caused by nano-objects attaching to
the sensor surface,

A, the artifacts component with an amplitude similar to T but containing only signals that
are due to non-target patterns or deviations of B from the constancy assumption, and

N , the noise incurred by the sensor.

Hence, the indirect proof for the nano-objects to be detected resides in the T component,
while all other components adversely affect the analysis process.

The pattern detector in Figure 5.1 receives a raw PAMONO measurement I as its input,
along with a set of algorithmic parameters, configuring its four processing modules. These
modules and their tasks in PAMONO data analysis are as follows:

1. Background elimination tackles the high amplitudes of the background component
B by dividing them out, respecting the signal model from Equation (4.1). Furthermore,
it serves to separate spatially overlapping target patterns in the temporal domain.
Details on background elimination are provided in Section 5.2.

84 Chapter 5. Pattern Detector for PAMONO

2. Denoising alleviates the noise component N and thus extracts an estimate of the T ⋅A
component. Details on denoising are provided in Section 5.3.

3. Time series classification classifies the time series observed in the T ⋅ A estimate
as being salient or not. Non-salient time series contain only residual noise, while
salient time series exhibit signals that are due to the T or the A component. No
decision is made, however, which of the two components is responsible for saliency. Two
alternative approaches to this time series classification are presented in Sections 5.4
and 5.5, respectively.

4. Segmentation aggregates the saliency class mask output by time series classification
to polygons, residing in the same spatiotemporal coordinate system as the input
measurement I. These polygons indicate where and when time series were salient,
thus delineating areas that are candidates for being affected by a nano-object adhesion.
Details on segmentation are provided in Section 5.6.

Each section presenting a detector module is closed by a subsection, listing and describing the
parameters arising in that module. For an overview, Section 5.7 lists all parameters of the
pattern detector. Evaluations of the proposed methods and their interplay are given in the
overall validation of SynOpSis in Chapter 7. However, the choice between the two alternatives
for time series classification is fixed in advance within this chapter. The corresponding
evaluation is given in Sections 5.5.4 and 5.5.5.

The overall goal of the pattern detector can be summarized as marking areas that are
candidates for being affected by a nano-object adhesion with polygons. Candidacy information
is obtained by analyzing an estimate of the T ⋅A component of the signal model. The artifacts
component A and possible estimation errors in this T ⋅A estimate demote the output polygons
to be merely candidates. The target signal component T is not separated from A on the pixel
level because the diverse nature of the artifacts impedes their modeling on the pixel level.
Instead, the T ⋅A estimate as computed by the denoising module is a part of the detector
output, as indicated by the bottommost connection in Figure 5.1. Along with the polygons,
it is processed further by the methods in Chapter 6: Local features are extracted from T ⋅A
within the areas covered by the detected polygons, cf. Section 6.2. These features measure
properties of the underlying intensities. They are used in classifying the polygons either as
actual nano-objects (True Positive (TP) detector responses due to the T component) or as
spurious detections (False Positive (FP) detector responses due to the A component). This
means T ⋅A is separated on the polygon level, instead of separating it on the pixel level.

5.2 Background Elimination

Background elimination serves to remove the temporally constant, high-intensity background
component B(x, y) from the PAMONO sensor images I(x, y, t) it receives as its input, cf.
Figure 5.1. Its second input are the background elimination parameters that are explained
throughout this section. Background elimination works on a per-image basis: For each
2-D image I(○, ○, t), a corresponding output image is computed, i.e. the input time series
of PAMONO images is transformed into a new time series of images with the background
B(x, y) removed. Looking at the signal model I(x, y, t) = B(x, y) ⋅ (T ⋅A)(x, y, t) +N(x, y, t)
from Equation (4.1), removing B(x, y) means that the output of background elimination
is a time series of images (T ⋅ A)(○, ○, t) +N(○, ○, t), containing the product of the target

5.2. Background Elimination 85

patterns signal T with the artifacts signal A and additive noise N . The large multiplicative
influence exerted by the high intensities in B are removed, thus making spatially neighboring
intensities in the resulting T ⋅A +N signal comparable.

While partly drawing from techniques applied in fluorescence microscopy (cf. Chapter
12 of [WMC10]), the background elimination approach presented here has been developed
specifically for PAMONO data, exploiting its spatiotemporal structure on the basis of the
signal model from Equation (4.1). Besides the main goal of removing the B component,
background elimination furthermore serves to increase data quality because it is realized via
methods incorporating temporal denoising. These methods are applied in a sliding window
fashion along the temporal axis, which firstly makes background elimination streaming-capable,
and secondly facilitates analysis because past nano-objects become part of the eliminated
background over time. Therefore, nano-objects that overlap spatially, can be separated in
the temporal domain, if they appear at moments in time that are further apart than the
temporal resolution provided by the sliding window background elimination kernel.

Besides the temporally constant background component B(x, y) from the signal model in
Equation (4.1), two new terms, the ‘past’ and the ‘present’ signals, are required to denote
the temporally variant components in background elimination. Both are prerequisites of the
following sections and are therefore defined now:
Definition 5.1. Let tc be the temporal index of the image I(x, y, tc) to be currently processed
by background elimination, within a stream I of PAMONO images as defined by the signal
model in Equation (4.1). Then the past ρ(x, y, tc) at time tc denotes the temporally constant,
high-intensity background component B(x, y) and any temporally variant signals in any other
component that happened before tc. This includes the nano-objects in the target patterns
component T , as well as artifacts A. Conversely, the term present φ(x, y, tc) at time tc
denotes B(x, y) along with any temporally variant signals in any other component that happen
at time tc.

Due to the temporal constancy of B(x, y), both, the past ρ and present φ contain the
same B. Background elimination serves to remove this constant B and the temporally variant
signal components that occurred before tc. More exactly: For time tc, background elimination
removes the past ρ(x, y, tc) from the present φ(x, y, tc). As an example, a nano-object that
attaches to the sensor surface at time ta < tc causes a step function at time ta, and the
step plateau remains constant from then on because the nano-object remains attached, cf.
Figure 2.2. As ta < tc, the step function is part of the past ρ(x, y, tc) at time tc and will
hence be removed by background elimination, facilitating the detection of new nano-objects
attaching later around the same spatial coordinates.

Therefore, background elimination removes the high intensities of B that occur in both,
past and present signal and furthermore extracts exactly those temporally variant signals
that change at time tc, i.e. between ρ and φ. Section 5.2.1 presents a linear approach for
estimating ρ and φ and subsequently provides a technique for background elimination that
exploits the signal model from Equation (4.1). The same technique can be applied to the
rank order-based nonlinear estimation of ρ and φ that is presented in Section 5.2.2.

5.2.1 Averaging Background Elimination

Background elimination operates on a per-image level, i.e. for each input image I(○, ○, tc), a
past image ρ(○, ○, tc) and a present image φ(○, ○, tc) are estimated, from which the resulting

86 Chapter 5. Pattern Detector for PAMONO

estimate of (T ⋅A)(○, ○, tc) +N(○, ○, tc) is computed. With this per-image nature clarified,
the index wildcards ○ are in the following replaced again with the actual indices x, y. Looking
at Definition 5.1, a simple idea for estimating the past signal ρ(x, y, tc) at time tc is to
compute a temporal aggregate over all sensor images I(x, y, t) with t < tc. This aggregate
can e.g. be obtained by averaging all preceding images over the temporal dimension. Doing
so, the resulting ρ(x, y, tc) fulfills Definition 5.1 because it contains the temporally constant
B(x, y) and anything temporally variant that happened before tc. However, averaging over all
past images means that transient fluctuations influence ρ(x, y, tc). Their influence becomes
the larger, the longer their duration. To counteract this effect, only the preceding image
I(x, y, tc−1) could be used as ρ(x, y, tc). This in turn is corrupted by more noise N , which was
previously alleviated by averaging over a possibly large number of images. The compromise
between these extremes that was chosen for PAMONO is to average over a window of the
most recent wρ ∈ N>0 images preceding tc:

ρ(x, y, tc) =
1
wρ

tc−1
∑

i=tc−wρ
I(x, y, i). (5.1)

The parameter wρ trades off a better Signal-to-Noise Ratio (SNR) against temporal resolution
(because it smoothes the input signal along the temporal dimension) and is subject to
optimization.

The simplest way of obtaining an estimate of the present signal φ(x, y, tc) is to use the
raw sensor image I(x, y, tc) recorded at time tc. It readily fulfills Definition 5.1 because it
contains the temporally constant B(x, y) and anything temporally variant that happens at
time tc. However, for the same SNR versus temporal resolution trade-off discussed in the
context of the past signal, it is beneficial to conduct a windowed estimation of φ(x, y, tc) and
to leave the window size wφ ∈ N>0 as a parameter for optimization. Therefore, analogously to
Equation (5.1), the present at time tc is estimated as

φ(x, y, tc) =
1
wφ

tc+wφ−1
∑
i=tc

I(x, y, i). (5.2)

The parameter wφ introduces latency proportional to its value into real-time analysis: Ob-
taining the background elimination result for time tc requires the subsequent wφ − 1 sensor
images to be already available. Note that the windowed average estimations of ρ and φ can
be regarded as a simple kind of temporal denoising/smoothing with a kernel size defined by
wρ and wφ.

Given past and present estimates ρ(x, y, tc) and φ(x, y, tc) for time tc, the background
elimination result at tc is computed as

φ(x, y, tc)
ρ(x, y, tc)

≈ (T ⋅A)(x, y, tc) +N(x, y, tc). (5.3)

This approximation can be inferred from the signal model in Equation (4.1) as follows: Both,
ρ and φ are temporal aggregates of PAMONO sensor images I = B ⋅ T ⋅ A + N . For the
first part of the argument, the noise summand N is temporarily ignored, making I purely
multiplicative. The B component is temporally constant and thus identical in both ρ and
φ. Therefore it is canceled out by the division in Equation (5.3), removing the irrelevant
high intensities. The remaining T ⋅A components are temporally variant: Only those values

5.2. Background Elimination 87

that are identical in past and present cancel out. Any values that changed between past
and present do not cancel out, yielding a T ⋅A estimate containing only those events that
happen at present, as desired. Realizing background elimination as a division accommodates
the multiplicative nature of the B ⋅ T ⋅ A components of the signal formation modeled in
Equation (4.1). However, for the noise term N , which has up to now been ignored, the model
is violated. Like in synthesis, as described in Section 4.3.2, this is negligible: First of all, the
intensities in N are small compared to those in B and are furthermore decreased due to the
fact that the windowed average estimations of ρ and φ realize a simple temporal denoising. A
second argument follows from assuming the availability of noise-free ρ and φ to which noise
terms Nρ and Nφ are added, respectively. Performing background elimination in accordance
with Equation (5.3) yields

φ +Nφ

ρ +Nρ
= φ

ρ +Nρ
+ Nφ

ρ +Nρ
.

The Nφ term in the numerator of the right summand is divided by ρ+Nρ, which is dominated
by the B in ρ and thus much larger than Nφ. The Nρ term in the denominator of the left
summand is added to ρ. As ρ involves the much larger B, the corruption exerted by Nρ on
the denominator is negligible. The error incurred by ignoring Nρ and Nφ in background
elimination is again regarded as (different) noise. This is the N on the right hand side of the
approximation in Equation (5.3).

Background elimination is applied to PAMONO sensor data in a sliding window fashion:
As soon as the first wρ + wφ images have been recorded, Equations (5.1) to (5.3) can be
evaluated for the first time. Every further recorded sensor image results in a new image
being output by background elimination, as tc is increased by one and the past and present
estimation windows defined by wρ and wφ are slid forward by one. This sliding window
approach is well-suited for the streaming scenario that arises in PAMONO data analysis.

Furthermore, it introduces a mechanism for “forgetting” past events: Once a nano-object
adhesion falls into the past window, it starts to fade and is completely “forgotten” from the
moment at which the past window only contains data from the high plateau after the step
occurred, cf. Figure 2.2. This prevents clutter and overlap in the spatial domain: Nano-objects
that overlap spatially but not temporally can be separated, if they appear at moments in
time that are further apart than the temporal resolution imposed by wρ and wφ. Forgetting
is also useful for feature extraction because then the features are only computed over the
most recent events occurring on the sensor surface.

Another crucial contribution that background elimination makes to feature extraction is the
removal of the irrelevant high amplitudes of the background component B: Intensities of time
series measured in spatially adjacent pixels become comparable because their multiplication
with the irrelevant and considerably larger intensities in B is divided out. Therefore, local
features of intensity can be computed because spatially adjacent pixels reside on the same
intensity scale. Furthermore, this makes the heights of the steps associated with nano-object
adhesions independent of whether the step occurs in a bright or a dark area of the sensor
surface because the gain exerted by B is factored out. As a result, step heights become
more homogeneous, such that their utility in feature extraction increases and the choice of
thresholds becomes simpler, cf. Section 5.4.1. A more diagnostic advantage is that according
to the underlying physics, similar step heights indicate similar nano-object sizes [ZKG+10], a
property that only holds if the influence of B is eliminated.

88 Chapter 5. Pattern Detector for PAMONO

Besides the window sizes wρ and wφ used in estimating the past ρ and present φ, a third
parameter is optimized for the background elimination module. This parameter is the boolean
switch bbg ∈ {0,1}, selecting whether to use the averaging-based past and present estimation
described in this section or the median-based technique presented in the following one.

5.2.2 Median Background Elimination

Median-based background elimination, replaces the sliding temporal average in estimating
the past and present signals with a sliding temporal median:

ρ(x, y, tc) =Median({I(x, y, tc −wρ), . . . , I(x, y, tc − 1)}), (5.4)
φ(x, y, tc) =Median({I(x, y, tc), . . . , I(x, y, tc +wφ − 1)}). (5.5)

Eliminating ρ from φ is done the same way as in averaging background elimination, i.e. by
applying Equation (5.3). Arguments and explanations given there carry over to median
background elimination because both, average and median, are considered and employed as
methods for temporal denoising of the input data. A difference, however, arises in how the
techniques respond to a temporal step function used as input, which is covered in the next
section.

5.2.3 Step Responses of Background Elimination Techniques

Figure 5.2 demonstrates the different results of averaging and median background elimination
for temporal step functions used as inputs. Such results are in the following denoted as
the step responses of background elimination. A step response like the ones shown in the
figure is obtained by applying background elimination to a time series of images, followed
by selecting a single coordinate (x, y) at which the temporal step occurs and then plotting
the observed values after background elimination over t. Red lines in the plots show the
step functions that are used as input to background elimination. In (a)–(b), an ideal step
function is used, while (c)–(d) use a real step function, that was observed in a dataset with
comparably high SNR. The choice for a step function with high SNR was taken to make
it discernible in the figure. Black dashed and dotted lines show the respective background
elimination result for different window sizes wρ and wφ used in past and present estimation.

Figure 5.2a illustrates for an ideal step input, that averaging smoothes the step approxi-
mately1 to a rising and a falling ramp function. The slope of the rising ramp corresponds to
wφ, while the slope of the falling ramp corresponds to wρ, as these parameters determine the
temporal distance between the maximum of the step response and its beginning (determined
by wφ) and ending (determined by wρ). Hence the temporal extension of the step response
corresponds to the sum of wρ and wφ. The maximum of the step response is attained at the
time of the original step in the input.

In contrast to averaging, the median is step-preserving, as is demonstrated in Figure 5.2b,
by applying it to an ideal step signal. The step response starts when more than half of the
input step has entered the present window because then the median changes. Accordingly, the
step response ends when more than half of the step has entered the past window. Consequently,
the temporal extension of the step response corresponds to the sum of wρ and wφ, divided by
two. The time of the input step can be inferred from this step response by adding wφ/2 to

1The slightly nonlinear behavior of the falling ramp is due to the division operation in Equation (5.3).

5.2. Background Elimination 89

t

In
te
n
si
ty

raw step

w
ρ = 40, wφ = 10

w
ρ = 80, wφ = 40

(a) Averaging, Ideal
t

In
te
n
si
ty

raw step

w
ρ = 40, wφ = 10

w
ρ = 80, wφ = 40

(b) Median, Ideal

t

In
te
n
si
ty

raw step

w
ρ = 40, wφ = 10

w
ρ = 80, wφ = 40

(c) Averaging, Real
t

In
te
n
si
ty

raw step

w
ρ = 40, wφ = 10

w
ρ = 80, wφ = 40

(d) Median, Real

Figure 5.2: Step Responses of Background Elimination Methods. (a) Averaging background elimi-
nation smoothes an ideal step function used as input (red) to a ramp-like function (black). (b)
Median background elimination is step-preserving for an ideal input step. (c) Larger averaging
window sizes wρ, wφ (dotted versus dashed black line) decrease noise in real data, while also
reducing temporal resolution. (d) The Step-preservation property of the median suffers in case
of a low Signal-to-Noise Ratio (SNR) in the input.

the time of the step in the step response. As a summary, with regard to ideal step inputs,
the main difference between averaging and median background elimination is step-smoothing
versus step-preservation.

In Figure 5.2c, averaging background elimination is applied to real data. The obtained
step responses behave like their corresponding ideal step responses, but with noise. For larger
wρ and wφ (dotted versus dashed black line), the noise in the result decreases, while the
temporal extension of the step response increases, thus decreasing the temporal resolution of
background elimination.

Figure 5.2d shows the result of median background elimination, attained for the same
input as in (c). On real data, the step-preservation property of the median suffers from low
SNR: Results look approximately like those in (c) because when the sorting that is part of
median computations is applied to very noisy values, it is less likely to produce a sharp step.

90 Chapter 5. Pattern Detector for PAMONO

Practical Effect

A consequence of these observations is that subsequent processing modules must adapt to
the step response of background elimination, defined by the parameter choices for wρ, wφ
and bbg. This is of particular concern for the methods used in the time series classification
module in Figure 5.1.

Therefore, the template to be used in fuzzy template matching (cf. Section 5.4) needs to
be adapted to account for the different step responses caused by the different parameters in
background elimination. This works as follows: For averaging past and present estimation
(bbg = 0), the according background elimination is applied to an ideal step function, using
the given values of wρ and wφ. The resulting step response is used as the ideal template
time series to compare observed time series against. For median past and present estimation
(bbg = 1), the step-preservation property could mislead to using an ideal median step response
like those in Figure 5.2b as the template. However, for low SNRs as in PAMONO time series,
it is more advisable to process an ideal step function for given wρ and wφ with averaging
background elimination and use this result as the template, which is motivated by the median
step response for real data in Figure 5.2d.

A second approach that can be used as the time series classification module in Figure 5.1
is wavelet-based time series classification (cf. Section 5.5). Here the impact of background
elimination is as follows: The time series classifier must be trained using the same background
elimination parameters as are later applied to the data to be classified. Both adaptations
listed here are handled automatically by the pattern detector.

5.2.4 Parameters

The parameters that are optimized for the background elimination module, along with the
examined ranges of values are:

bbg ∈ {0,1}
a boolean selecting whether to aggregate the past and present estimate via temporal
averaging (bbg = 0) or temporal median (bbg = 1),

wρ ∈ {1, . . . ,40}
an integer controlling the length of the temporal window over which the past estimate
is aggregated (cf. Equations (5.1) and (5.4), respectively),

wφ ∈ {1, . . . ,40}
an integer controlling the length of the temporal window over which the present estimate
is aggregated (cf. Equations (5.2) and (5.5), respectively).

5.3 Denoising

Background elimination removed the background component B from the signal I = B ⋅T ⋅A+N
recorded by the PAMONO sensor. Furthermore, it attenuated the noise component N due
to its smoothing properties. The denoising techniques presented in this section target the
residual noise remaining after background elimination and hence output a denoised estimate
T ⋅A of the product of the target patterns and artifacts signal. This time series of T ⋅A images
is used in the subsequent time series classification module, as well as in the feature extraction
described in Section 6.2, cf. also Figure 5.1. Before this section starts with introducing the

5.3. Denoising 91

denoising techniques, the order of background elimination and denoising is discussed in the
following paragraphs, followed by a note on the choice of denoising techniques to be presented.

On Applying Denoising After Background Elimination

Restorative techniques like denoising are often applied before application-specific image
enhancement [GW07] like background elimination. Nevertheless, the preceding paragraph
stated that in the pattern detector in Figure 5.1, denoising is applied after background
elimination. There are several reasons for choosing this order:

• Firstly, intensity variation in the target patterns signal T is very small, compared to the
background B. Denoising the images containing B would involve the highly spatially
variant intensities in B entering the filtering process, which could destroy the T signal.
This is particularly true for nonlinear filters like the median (cf. Section 5.3.1), if applied
in the spatial domain: The small intensity variations in T can be easily covered up by
the large spatial variations in B.

• Secondly, dark and light areas in B undergo a different amplification, exerted by the
division in Equation (5.3): Flaws of a denoising applied before background elimination
would be amplified more strongly if they occur where B is dark.

• Thirdly, background elimination already incorporates temporal denoising, due to its
smoothing properties. As B is assumed constant in PAMONO, all samples along the
temporal axis contain the same B component, hence temporal denoising does not suffer
the problem mentioned in the first point with respect to spatial denoising. The denoising
carried out after background elimination is intended to further denoise the results,
targeting the residual noise that evaded the temporal denoising exerted by background
elimination. For this purpose, applying background elimination before denoising enables
exploiting spatial correlations in the data. Any spatial denoising should be carried out
after background elimination for the reasons stated in the previous points.

Consequently, the denoising techniques described here are spatial and spatiotemporal
techniques. They exploit the spatial correlations that background elimination revealed, to
firstly address the remaining noise that could not be eliminated by temporal denoising,
and to secondly remove any new signal flaws introduced e.g. by the division in background
elimination.

Choice of Denoising Techniques

Due to the nonlinear operations2 in background elimination, the nature of the noise remaining
after background elimination is no longer the same as in the signal model in Equation (4.1).
Assumptions like the Mixed-Poisson-Gaussian (MPG) nature of Charge-Coupled Device
(CCD) sensor noise [MSB95] do not hold any longer after background elimination. Lack of the
MPG property means that applying a Variance Stabilizing Transform (VST) like Generalized
Anscombe Transform (GAT) [SMB98] to alleviate Poissonity, followed by a second filter
addressing Gaussian noise is not anymore better justified than applying general purpose
denoising techniques. For this reason, the idea followed here is to leave the choice of denoising

2The nonlinear operations applied in background elimination are the division in Equation (5.3) and the
medians in Equations (5.4) and (5.5).

92 Chapter 5. Pattern Detector for PAMONO

methods, along with method parameters, open to optimization: The goal of denoising in
PAMONO data analysis is not signal restoration but extracting an estimate of the T ⋅ A
components in a fashion that is suitable for further application-specific processing steps. Any
method, or combination of methods, accomplishing this task is viable. Hence optimization
can arbitrarily combine the denoising techniques presented in the following, by individually
enabling or disabling them. Filter order, however, is fixed and is discussed separately, where
the respective filters are presented. The order of presentation is from general to more specific.
It does not reflect the order in which the filters are applied.

With these points discussed, the structure of this section is as follows: Section 5.3.1
describes basic linear and nonlinear filters for general spatial denoising tasks. Section 5.3.2
presents a fuzzy logic-based spatiotemporal denoising filter to identify and remove impulse
noise from video sequences. Section 5.3.3 introduces PAMONO-specific heuristics for data
cleaning. Finally, Section 5.3.4 lists and describes all parameters arising in the discussed
methods that are to be optimized.

5.3.1 Spatial Denoising Techniques

Spatial denoising techniques work on the 2-D image-level: They are applied to an image
I(○, ○, tc) at a given time tc, independent of images at other times t. Hence these methods
can trivially accept a stream of images as input. For convenience of notation, the 2-D image
I(○, ○, tc) at time tc is in the following denoted as ι(x, y), dropping the temporal index.
Analogously, the filtering result is denoted as ω(x, y).

Average Filter

The first spatial denoising filter to be presented is the average filter [GW07]: For each position
(x, y) in the input image ι(x, y), the value of the output image ω(x, y) is determined by
computing the average intensity in a window of width Kw

avg ∈ N>0 and height Kh
avg ∈ N>0,

centered at (x, y) in ι. Filling every pixel (x, y) in the output ω by computing such an average
is mathematically equivalent to the discrete convolution [GW07] of ι with an averaging kernel
κavg(x, y), where

κavg(x, y) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
Kw

avgK
h
avg

for (x, y) in Kw
avg ×Kh

avg window, center at (0,0)
0 otherwise.

(5.6)

Note that in computing convolution results for the boundary regions of ω, the support of
kernel κavg leaves the image boundary of ι. Such boundary cases must be treated, e.g. by
mirroring ι about its boundaries [GW07]. The parameters to be optimized for averaging-based
denoising are the boolean switch bdenoise

avg enabling or disabling it, and the kernel width and
height Kw

avg and Kh
avg. Increasing Kw

avg increases the amount of smoothing/denoising in the
horizontal direction, analogously for Kh

avg and the vertical direction.

Gauß Filter

According to the convolution theorem, convolving an image ι with a filter kernel κ in the
spatial domain is equivalent to multiplying them in the Fourier domain (and inversely Fourier-
transforming the result) [Wah89]. In the Fourier domain, the averaging kernel κavg from the

5.3. Denoising 93

0

0.01

5-5

0.02

κ
G
au

ß
(x
,
y
|
2) 0.03

yx

00

0.04

5 -5

Figure 5.3: 2-D Gauß Kernel. Plot of a 2-D Gauß kernel κGauß over x, y for σGauß = 2.

previous paragraph is a 2-D sinc-function. Multiplying this Fourier spectrum with the Fourier
spectrum of ι illustrates that the attenuation of frequencies in ι exerted by the averaging
denoising filter is rather “bumpy”, owing to the bumpiness of the sinc-function. Depending
on the input, this can yield unsatisfactory results.

Convolution of ι with a 2-D Gauß kernel (example in Figure 5.3) constitutes a denoising
filter with a frequency attenuation that is not bumpy because the Fourier transform of a
Gaussian distribution is again a Gaussian distribution with reciprocal standard deviation
[Wah89]. The 2-D Gauß kernel [Low04] is defined as

κGauß(x, y ∣ σGauß) =
1

2πσ2
Gauß

exp(−(x2 + y2)/2σ2
Gauß). (5.7)

Here σGauß ∈ R>0 is the standard deviation of the underlying Gaussian normal distribution. It
is a parameter to be optimized for the pattern detector, along with the switch bdenoise

Gauß ∈ {0,1},
enabling the Gaussian denoising filter. Increasing σGauß increases the size of κGauß in both
directions. Stated more exactly, it increases the exerted amount of smoothing/denoising
isotropically. Figure 5.4b shows an exemplary result of filtering a PAMONO image after
background elimination with a Gaussian kernel.

Median Filter

By computing a κ-weighted sum of image intensities ι (i.e. convolution), linear techniques
such as averaging or Gaussian denoising are strongly affected by outlier pixels. The reason is
that for every image position at which the kernel κ exhibits a non-zero value over an outlier
pixel, an outlier summand in the filter response is incurred.

Median filtering [GW07] is a denoising method that is more robust to outliers. Like linear
methods, it employs a sliding window over the domain of the image ι to compute the values
of the filter response ω. However, it does so in a nonlinear way, using order statistics: ω(x, y)
is defined as the median over the intensities in a Kw

med ×Kh
med window in ι, centered at (x, y).

Unlike with linear methods, it is guaranteed that all intensities in ω actually exist in ι. As a
drawback, since not all coordinates in ι necessarily contribute to the result, it is possible to
construct pathological inputs where the median filter “hallucinates” structures that do not
exist in the input image, e.g. the grating-like structures in Figure 5.4c. A typical use case for

94 Chapter 5. Pattern Detector for PAMONO

(a) Original Input (b) Gauß Only (c) Median Only

(d) Median Then Gauß (e) Gauß Then Median

Figure 5.4: Filter Order – Example. (a) shows a region from a PAMONO image after background
elimination, containing two nano-object adhesions. (b) and (c) are the results of applying a
spatial Gauß and median filter, respectively, exhibiting undesired structures caused by filtering.
Cascading both filters removes these structures (d)–(e). Applying the Gauß filter before the
median filter (e) provides superior contrast and more accented edges, leading to higher step
responses in the time series of the affected pixels. Thus this filter order was chosen as it facilitates
time series classification.

the median filter is removing small disturbances in an image, e.g. salt and pepper noise. For a
low density of noisy pixels, this type of noise can be removed nearly completely. Furthermore,
the median filter introduces less image blur, compared to an averaging filter of the same size
[GW07]. The parameters to be optimized for the median filter are the sliding window width
Kw

med ∈ N>0 and height Kh
med ∈ N>0, along with the switch bdenoise

med ∈ {0,1} enabling the filter.

Filter Order

Figure 5.4 illustrates the impact of filter order on the obtained results. In (a), an amplified
real PAMONO image after background elimination is shown, while (b) and (c) show the
results of applying solely the Gauß, respectively the median filter. Comparing these images

5.3. Denoising 95

d

0

0.2

0.4

0.6

0.8

1

M
em

b
er
sh
ip

D
eg
re
e
ζ
l 1
,l
2

is
L
ar
ge
(d
)

l1 l2

Figure 5.5: Membership Function for the Fuzzy Set of Large Intensity Differences. An intensity
difference d can be definitely large (d ≥ l2), definitely not large (d ≤ l1), or something fuzzy in
between (l1 < d < l2). The membership function is defined in Equation (5.8). Figure adapted
from [MNK11].

to the results of cascading both filters, as in (d) and (e), the first thing to note is that this
cascade improves perceived image quality, justifying the approach of allowing the optimization
to enable the filters simultaneously. Comparing the result of firstly applying the median
filter, then the Gauß filter (d) to the reverse order (e) provides an empirical argument for
choosing the latter as the filter order: (e) exhibits superior contrast compared to (d), which
is especially true for the edges of the bright and dark areas surrounding the nano-object
adhesions. Better contrast and less blurring about the edges yields stronger step responses in
the affected pixels, thus facilitating subsequent time series classification.

Therefore, in the denoising module of the pattern detector from Figure 5.1, the linear
filters (averaging and Gauß filter) are applied before the median filter. The internal order
between the averaging and Gauß filter does not matter: They are commutative because they
are linear filters.

5.3.2 Fuzzy Spatiotemporal Denoising

Fuzzy spatiotemporal denoising takes a noisy time series of images T ⋅A +N as input, along
with the parameters configuring the method. Its purpose is to reduce the noise remaining
after background elimination by exploiting both, spatial and temporal correlations.

In contrast to classical boolean logic, where propositions can be either true or false,
respectively from the set {0,1}, fuzzy logic distinguishes continuous degrees of truth from the
interval [0,1]. If propositions about the membership of entities to sets are regarded, as will
be done in fuzzy denoising, one speaks of fuzzy sets, as initially proposed in the seminal
work by Zadeh [Zad65]: Membership of an entity to a set is no longer described by boolean
values from {0,1}, but by a fuzzy set membership function ζ, mapping to the interval [0,1].
If the domain of ζ is not fuzzy, the mapping realized by ζ is referred to as the fuzzification
of that domain. Unlike probabilities, fuzzy set memberships of an entity can sum to values
larger or smaller than one over all sets. Mapping a fuzzy set membership ζ to a crisp set
membership from {0,1} is called defuzzification.

96 Chapter 5. Pattern Detector for PAMONO

The method described here adapts the fuzzy video denoising approach by Melange,
Nachtegael, and Kerre [MNK11] for PAMONO data [LWT12] and runs on the GPU for
real-time-capable stream processing [LST+13a]. Melange, Nachtegael, and Kerre developed
their method to specifically address random impulse noise in video sequences. In this context,
random impulse noise is defined as the replacement of intensities at independently drawn,
uniformly distributed spatiotemporal positions x, y, t by random values that were drawn
independently and uniformly distributed from the range of intensity values. This means the
method is designed for addressing single pixel noise. Therefore, in PAMONO data analysis it
is applied before the spatially extended smoothing filters from Section 5.3.1, to prevent the
average or Gauß filter from “smearing” single pixel noise across the image plane. Note that
the PAMONO signal model from Chapter 4 does not contain any sources of random impulse
noise. Instead, fuzzy denoising serves as a filter for spatiotemporal outliers that can arise due
to the low SNR and the division by small values during background elimination.

The key ideas behind the method can be summarized as follows: Within the time series of
input images I(x, y, t), pixels (x, y, t) are classified into two fuzzy sets: noisy and noise-free
pixels. Each of the two sets is defined as a combination of several fuzzy rules that exploit
spatial as well as temporal information from a local spatiotemporal window around (x, y, t).
Hence correlations within and between images are taken into account in assigning fuzzy set
memberships. Pixel classification works as follows: The fuzzy rules that define the noisy and
noise-free pixel sets are evaluated. This assigns to each pixel a degree of fuzzy set membership
in the noisy and in the noise-free set. These fuzzy set memberships are turned into a crisp
binary classification by assigning to each pixel the class for which the fuzzy set membership
is larger. Then, for each pixel that was assigned to the noisy class, the pixel value is replaced
by a new value attained from filtering only noise-free pixel values in a local spatiotemporal
neighborhood. This scheme is iterated in successive steps, progressing from removing more
obvious to less obvious noise, using specifically adapted fuzzy rules in each step. This iterative
refinement strategy preserves small details, which is important for PAMONO data analysis
due to the small spatial extension of nano-object adhesions.

Melange, Nachtegael, and Kerre in their original work [MNK11] were concerned with
denoising color videos showing natural scenes. Hence their approach is designed for multi-
channel input data and incorporates motion compensation by block matching. PAMONO
sensor videos, however, are recorded in grayscale and exhibit no motion: Nano-objects appear
at certain locations that remain fixed from the moment of adhesion. Hence, for PAMONO,
the fuzzy rules assuming multichannel data are omitted, and motion compensation is skipped.
As a result, the iterative refinement scheme described in the following consists of two instead
of three steps because the second step from [MNK11], using color information for detecting
noisy pixels in moving objects, does not apply to PAMONO.

First Iteration

In the first iteration, spatial and temporal consistency with neighboring pixels are evaluated,
fuzzily assigning each pixel to the noise-free, respectively noisy class. Consistency is measured
in terms of absolute intensity difference d. This difference is fuzzified into the fuzzy set of large

5.3. Denoising 97

values: Given a lower and an upper fuzzy threshold l1, l2 ∈ R≥0 with 0 ≤ l1 < l2, membership
to the fuzzy set of large values (cf. plot in Figure 5.5) is defined as

ζ l1,l2isLarge(d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for d ≥ l2
d−l1
l2−l1 for l1 < d < l2
0 otherwise.

(5.8)

Hence an intensity difference d can be definitely large (d ≥ l2), definitely not large (d ≤ l1),
or something fuzzy in between (l1 < d < l2). The lower and upper fuzzy thresholds l1 and l2
are the parameters to be optimized for fuzzy denoising, along with a boolean bdenoise

fuzzy ∈ {0,1},
deciding whether to apply fuzzy denoising at all.

In order to facilitate a semi-formal statement of the fuzzy rules in terms of continuous
text, the following definitions are made:

Definition 5.2. The property of being large in the sense of Equation (5.8) is in continuous
text referred to as being LARGEf . Furthermore, a ANDf b denotes the fuzzy conjunction
of two fuzzy set memberships a and b. Following [MNK11], the conjunction is defined as
a ANDf b ∶= min(a, b). Analogously, a ORf b is the fuzzy disjunction, defined as a ORf b ∶=
max(a, b). Fuzzy negation is defined as NOTf a ∶= 1 − a.

Given these prerequisites, the fuzzy rule defining the set of noise-free pixels states that a
pixel (x, y, t) is regarded as noise-free, if the absolute intensity difference d to its temporal
predecessor (x, y, t − 1) is NOTf LARGEf , ANDf the absolute intensity difference to its
temporal successor (x, y, t + 1) is NOTf LARGEf , ANDf there are at least two spatial
neighbors (x1, y1, t) and (x2, y2, t) within a radius of two pixels on the same image t, to which
the absolute intensity difference is NOTf LARGEf . In short: A pixel is considered noise-free,
if it is not an outlier within a local spatiotemporal window. A detailed formal statement of
these and all following fuzzy rules can be found in [MNK11].

Conversely, the fuzzy rule defining the set of noisy pixels states that a pixel (x, y, t) is
regarded as noisy, if the absolute intensity difference to (x, y, t − 1) ANDf (x, y, t + 1) is
LARGEf , ANDf there are at least two spatial neighbors with LARGEf intensity difference
to (x, y, t), but NOTf with LARGEf intensity difference to each other. In short: (x, y, t) is
an outlier/impulse, both temporally and spatially.

After that, the noise-free and noisy set are turned to a crisp binary classification, by
assigning pixels to the class associated with the larger fuzzy set membership. Noise-free
pixels remain unchanged, while pixels classified as noisy are filtered solely on the basis of
the noise-free pixels. Filtering works as follows: Each noisy pixel (x, y, t) is replaced by the
mean of the corresponding pixels (x, y, t − 1) and (x, y, t + 1) in the previous and subsequent
image, if both are not noisy. Otherwise it is replaced by the median of the noise-free pixels in
a window with radius two in the same image.

Second Iteration

A successive refinement of the results from the first iteration is computed in the second
iteration. This time the rule defining the fuzzy set of noisy pixels states that a pixel (x, y, t)
is considered noisy, if the absolute intensity difference d between pixel (x, y, t) in the result
from the first iteration, and pixel (x, y, t − 1) in the previous, already fully denoised image is

98 Chapter 5. Pattern Detector for PAMONO

LARGEf , ANDf the difference between the fully denoised (x, y, t − 1) and the unprocessed
next image pixel (x, y, t + 1) is NOTf LARGEf . This rule identifies isolated noise pixels
that were either not detected or filtered to a bad value in the first iteration. It is the first
part of the noisy set rule, to which the following second part is linked via fuzzy ORf : If for
the first iteration result, pixel (x, y, t) resides in an area of homogeneous intensities, i.e. the
intensity difference between the second largest and the second3 smallest intensity in a 3 × 3
window is NOTf LARGEf , ANDf pixel (x, y, t) exhibits a large intensity difference to the
second smallest ORf to the second largest element, then (x, y, t) is considered noisy. This
rule regards only homogeneous regions, and marks pixels as noisy that deviate largely from
their homogeneous neighborhood.

In the second iteration, there is no rule for the noise-free set. Instead, any pixel for which
the noisy rule is not equal to one, i.e. the noisy conditions are not fully fulfilled, is considered
noise-free.

Filtering in the second iteration is carried out the same way as in the first one, but using
the images from that iteration as input, instead of the original input images.

5.3.3 Application-Specific Cleaning Heuristics

Besides the rather general denoising techniques described in the preceding part of this section,
the peculiarities of PAMONO data analysis demand for additional, more application-specific
denoising techniques, which will be presented now.

Brightness Correction

Fluctuations in illumination and temperature of the gold sensor surface, as well as heating of
the CCD chip can cause global variations in the brightness of the recorded images. These
variations affect all pixels, and in the worst case, they cause a step-like temporal signature in
all recorded time series. Brightness correction operates per image and, if enabled, addresses
this issue by enforcing the same mean intensity value for each image. The increase in mean
intensity that is due to attaching nano-objects is negligibly small and hence does not pose
a problem. Brightness correction is applied before all other denoising methods, such that
image-wide intensity outliers and temporal trends have already been sorted out before fuzzy
spatiotemporal denoising and the other filters are applied. The parameter optimized with
respect to brightness correction is the boolean switch bdenoise

bright ∈ {0,1}, turning it on and off.

Pixel Overspilling Compensation

As the capabilities of the PAMONO sensor live off the measurement of increases in intensities,
saturated/overexposed pixels in the CCD chip are to be avoided. On the other hand, in order
to fully exploit the intensity resolution of the CCD, underexposure is undesirable as well.
Therefore, before any measurement, the CCD is configured such that the minimum measured
intensity is close to zero, and the maximum measured intensity is (less) close to the value
the CCD outputs at the full well capacity of a pixel. Now given this scenario, due to sensor
heating and the possibility of adverse laboratory conditions, complete avoidance of saturated
pixels can not always be guaranteed. Therefore it is desirable to include a heuristic into the
pattern detector that alleviates the negative effects of saturated pixels.

3The first place on both ends is reserved for the possibly noisy pixel.

5.3. Denoising 99

These negative effects arise in the pixels neighboring the saturated pixels: Shaking or
vibration of the PAMONO sensor during measurement may cause the CCD to be displaced
with respect to the gold surface. As a consequence, the saturated pixels may spill over to their
unsaturated neighbors, yielding a step function-like temporal profile in the raw sensor data.
This is undesired because it is a step function not associated with a nano-object adhesion
and thus a potential candidate for an FP detector response.

Pixel overspilling compensation addresses this problem: Saturated pixels are detected
and these pixels, along with their neighbors, are excluded from pattern detection. Albeit
being listed as a denoising method, the pixels excluded by pixel overspilling compensation
are determined prior to background elimination because the saturated pixels are identified on
the basis of the original values measured by the CCD sensor. The parameter to be optimized
with respect to pixel overspilling compensation is the boolean switch bdenoise

spill ∈ {0,1}, turning
it on and off.

5.3.4 Parameters

The parameters that are optimized for the denoising module, along with the examined ranges
of values are:

Spatial Denoising Techniques

bdenoise
avg ∈ {0,1}

a boolean switch turning the spatial averaging filter on/off,
Kw

avg ∈ {1, . . . ,7}
an integer determining the averaging filter kernel width,

Kh
avg ∈ {1, . . . ,7}

an integer determining the averaging filter kernel height,
bdenoise

Gauß ∈ {0,1}
a boolean switch turning the spatial Gauß filter on/off,

σGauß ∈ [1.5,3.5]
a float determining the standard deviation of the Gauß filter kernel,

bdenoise
med ∈ {0,1}

a boolean switch turning the spatial median filter on/off,
Kw

med ∈ {1, . . . ,7}
an integer determining the median filter kernel width,

Kh
med ∈ {1, . . . ,7}

an integer determining the median filter kernel height,

Fuzzy Spatiotemporal Denoising

bdenoise
fuzzy ∈ {0,1}

a boolean switch turning the fuzzy denoising filter on/off,
l1 ∈ [0.02,0.1]

a float containing the lower soft threshold of fuzzy denoising, determining when an
intensity difference is considered to be small,

l2 ∈ [0.1,0.2]
a float containing the upper soft threshold of fuzzy denoising, determining when an
intensity difference is considered to be large,

100 Chapter 5. Pattern Detector for PAMONO

t

In
te

n
si

ty

Up signal

Background

Down signal
t

Nano-Objects
t

Figure 5.6: Classes of Time Series. In the light center of a nano-object adhesion, upward step functions
are measured by the sensor. The background elimination response of such a function is an
upward ramp-like function, belonging to the up signal class (red). Surrounding the center of
a nano-object adhesion there are dark concentric rings, resulting in downward step functions
with background elimination responses that belong to the down signal class (blue). Areas not
affected by a nano-object adhesion result in noise-only responses, belonging to the background
class (green). The term ‘background’ alludes to the fact that these time series are not affected
by an object of interest. Figure adapted from [SFL+14].

Application-Specific Cleaning Heuristics

bdenoise
bright ∈ {0,1}

a boolean switch turning brightness correction on/off,
bdenoise

spill ∈ {0,1}
a boolean switch turning pixel overspilling compensation on/off.

5.4 Time Series Classification via Fuzzy Template Matching

Time series classification receives the denoised T ⋅A estimate as input, cf. Figure 5.1. T ⋅A is
the product signal of the target patterns component caused by nano-object adhesions to the
sensor surface and the artifacts component caused by imperfections of measurement. The
purpose of time series classification is finding time series in T ⋅A that are similar to step
responses of the preceding processing modules and that are thus candidates for being affected
by a nano-object adhesion. These candidate time series share the property of being salient
due to their step response-like structure. Nevertheless, time series classification makes no
statement about whether saliency in the candidate time series is caused by an event in T or
in A. The output of time series classification is a binary class mask Γ, serving as input to the
segmentation module described in Section 5.6.

As discussed in more detail in Chapter 4, nano-objects attaching to the surface of the
PAMONO sensor manifest as upward and downward step functions in the time series of
intensities observed at pixels in the affected areas: The central part of nano-object adhesions
is characterized by upward step functions, surrounded by downward step functions in the
outer parts. Time series classification serves to determine whether and when a time series
observed at a certain sensor position is affected by a nano-object adhesion. As discussed in
Section 5.2.3, the result of applying background elimination to a time series is called the
response of background elimination to that input time series. For a step function, as arising
around attaching nano-objects, the background elimination response in T ⋅A is a ramp-like

5.4. Time Series Classification via Fuzzy Template Matching 101

function. Three classes of response time series are distinguished, the names and semantics of
which are determined as follows:

Terminology 5.1. A background elimination response obtained for an upward step function,
as arising in the light center of a nano-object adhesion, belongs to the up signal class, cf.
red time series in Figure 5.6. Analogously, a response obtained for a downward step function,
as arising in the dark concentric rings around a nano-object adhesion, belongs to the down
signal class, cf. blue time series in Figure 5.6. Any response obtained for a time series from
an area not affected by a nano-object adhesion belongs to the background class, cf. green
time series in Figure 5.6.

The background class is not to be confused with the temporally constant, high amplitude
background component B from the signal model in Equation (4.1) that was removed by
background elimination. The intuition behind also calling this class of time series ‘background’
originates in conventional photography, where those parts of an image that do not show the
objects of interest are called background.

Note that the ramp functions defining the up and down signal classes have finite support,
so they can be detected using a sliding window of finite length in a template matching
approach. Given the temporal coordinate of the starting point of a ramp function in the data,
the temporal onset of the nano-object adhesion can be inferred as according to Section 5.2.3.

The time series classification method to be presented in this section is a real-time-capable
streaming method, running on the GPU [LST+13a; LST+13b]. It consists of three parts:

1. A preselection of time series is computed, based on applying hard thresholds to intensity
magnitudes. It decides which time series undergo the computationally more expensive
subsequent processing. Any time series not selected here is immediately classified as
background. This part is the topic of Section 5.4.1.

2. Matching scores between the previously selected observed time series and an ideal
template time series are computed. This part is described in Section 5.4.2.

3. Fuzzy rules are applied to the previously computed matching scores, classifying the
selected time series as either up/down signals or background, producing the binary
class mask Γ(x, y, z). A distinction between the up and down signal class is not made
because both are related to nano-object adhesions. This part is detailed in Section 5.4.3.

5.4.1 Time Series Preselection

Classifying the observed time series into the classes from Terminology 5.1 is conducted in
a sliding window fashion. In the following, time series are regarded individually per image
pixel, so to avoid cluttered notation, the x, y coordinates will be dropped. In addition, as
only excerpts from a fixed-length sliding window are considered, these excerpts are in the
following written as vectors, facilitating notation of mathematical operations applied to them.
Hence v ∈ RT denotes the time series (T ⋅A)(xc, yc, ta . . . tb) observed at a certain image pixel
(xc, yc), within a sliding window from ta to tb. The T in the dimension of v ∈ RT is the
length of the sliding window and is not to be confused with the target patterns signal in
(T ⋅A)(x, y, t). Vector component v1 contains the value of (T ⋅A)(xc, yc, ta), while vT contains
the value of (T ⋅A)(xc, yc, tb). The sliding window length T is subject to optimization and
simultaneously determines the size of the ideal template time series used in computing the
matching score, cf. Section 5.4.2.

102 Chapter 5. Pattern Detector for PAMONO

Given these prerequisites of notation, time series preselection is a hard thresholding
method, applied to each time series v observed in the input. Global thresholding can be
applied to this input because background elimination removed the multiplicative influence of
B, hence making the time series in the T ⋅A estimate comparable in terms of their intensity.
A lower threshold h1 ∈ R≥0 and an upper threshold h2 ∈ R≥0 are applied to a measure of the
intensity difference occurring in v. This intensity difference d is computed as

d = max({vi ∣ i ∈ {1, . . . , T}}) −min({vi ∣ i ∈ {1, . . . , T}}). (5.9)

If for a given time series v it holds that h1 ≤ d ≤ h2, it is selected for further processing, and
if not, it is classified as a background time series. An intensity difference residing between
the two thresholds is a necessary but not a sufficient condition for a time series to belong
to the up or down signal class. If this condition is violated because d is too low, there can
be no up or down signal in the time series due to low contrast. If it is violated because d
is too high, there might be an up or down signal in the time series but from its excessively
large magnitude, it can be inferred that it is not related to a nano-object but to a different
cause, e.g. an air bubble, or sensor jitter from a concussion. Therefore, the time series is
classified as background. If the necessary condition is not violated, no classification can be
made because time series structure has not been considered yet. Structure gives a sufficient
condition for time series belonging to the up or down signal class and is considered in the
subsequent template matching in Section 5.4.2.

Summing up, the purpose of time series preselection is two-fold:

1. Only time series with a certain contrast pertaining to nano-object adhesions are kept.
In this process time series magnitude is decisive, imposing a necessary condition for up
or down signals. In the subsequent template matching, time series structure is decisive,
constituting a sufficient condition for up or down signals.

2. Early removal of most time series belonging to the background class saves computational
effort because these time series do not undergo the subsequent processing. This pays
off because large parts of the sensor surface belong to the background class, as the
patterns caused by nano-objects only have small spatial and temporal extension.

5.4.2 Matching Score

Time series preselection classified part of the observed time series as belonging to the
background class and ensured that the remaining time series exhibit magnitudes that are
characteristic for nano-object adhesions. These remaining time series are examined further by
computing a matching score, based solely on temporal structure, measuring similarity of the
observed time series to an up or down signal. As both, up and down signals are indicative of
a nano-object adhesion, these two classes are no longer distinguished, and a matching score is
devised that attains high values in both cases. An ideal template time series t ∈ RT is used to
match them to. Such a template is determined by applying background elimination to an ideal
upward step function, using the same parameters bbg, wρ, wφ as for the observed input time
series. This yields the noise-free, ideal response of background elimination to an upward step
function and thus an ideal time series belonging to the up signal class from Terminology 5.1.
Section 5.2.3 gives a more detailed discussion of this topic and an illustration in Figure 5.2.

5.4. Time Series Classification via Fuzzy Template Matching 103

The matching score m for an individual observed time series v is computed as its absolute
cosine similarity to the ideal template t:

m = ∣ ⟨v, t⟩
∥v∥ ∥t∥∣ . (5.10)

Here ⟨○, ○⟩ denotes the dot product of vectors, ∥○∥ is the Euclidean norm of a vector, and ∣○∣
is the absolute value of a scalar. The argument of the absolute value function corresponds to
the cosine between the vectors v and t, hence the name ‘cosine similarity’. If v is an ideal
up signal like t, then m = 1 because the vectors are parallel. This property does not change
if v is scaled, so m is independent of the magnitude of the values in v. This is desirable
because time series differing solely in magnitude thus attain the same matching score, and
time series preselection already ensured that the time series for which m is computed exhibit
magnitudes from the interval that is indicative of nano-object adhesions. If v is an ideal down
signal, the vectors are again parallel, but point in opposite directions. Consequently their
cosine becomes −1, making m = 1. Time series vectors v with different orientation attain
lower matching scores and m decreases with increasing difference in orientation. The time
series belonging to the background class that have passed preselection did so because their
magnitude is from the interval indicative of a nano-object adhesion. However, their structure,
respectively their orientation if written as a vector v, is different from the template t, cf.
Figure 5.6. Hence they attain lower values in m than time series belonging to the up or
down signal class. The lowest value of an absolute cosine and thus the lowest possible m is
zero, which is attained for v that are orthogonal to t. Consequently, the matching score m is
in [0,1], invariant to time series magnitudes, and attains high values for time series v that
are similar to either up or down signals. Invariance to time series magnitude is a desirable
property because down signals usually exhibit smaller magnitudes than up signals. Making
m depend solely on time series structure and not on magnitude enables treating both, up
and down signals, the same way during further processing like the hard respectively soft
thresholding on m to be presented in Section 5.4.3.

Computing the matching score m is done within the same sliding window of length T
used in time series preselection, and the results of both define the spatiotemporal volume
M(x, y, t) of all matching scores m. Ignoring the cases where the sliding window crosses
the temporal boundaries4 of the volume I(x, y, t) of sensor images, there is a one-to-one
correspondence between the coordinates (x, y, t) in I and M . Therefore the overall process
of preselection and matching score computation is as follows: The sliding window is placed
at each (xc, yc, tc) in the domain of the denoising result. If preselection classifies the time
series observed at (xc, yc, tc) as belonging to the background class, M(xc, yc, tc) is set to zero
and the next coordinate is processed. Otherwise the matching score m is computed and
assigned to M(xc, yc, tc), and then the next coordinate is processed. This process defines
the spatiotemporal volume M of matching scores, measuring similarity of time series after
background elimination and denoising to an ideal template function indicative of nano-object
adhesions. High values in M are attained for both, the up and down signal class from
Terminology 5.1, while the background class attains low values.

4For the boundary cases, M is set to zero.

104 Chapter 5. Pattern Detector for PAMONO

5.4.3 Fuzzy Time Series Classification

Fuzzy5 time series classification [LST+13a; LST+13b] is a variant of the noisy versus noise-free
pixel classification used in the fuzzy denoising procedure from Section 5.3.2. It uses the same
GPU implementation but defines different fuzzy rules, in order to distinguish the two classes
of interest: These two classes are the background class from Terminology 5.1 on the one
hand, and the union of the up and down signal class on the other. Up and down signals are
not distinguished because they are both indicative of nano-objects attaching to the sensor
surface.

Fuzzy classification takes the continuous matching scores M(x, y, t) from the previous
section as input. For each coordinate (x, y, t), matching scores from a local neighborhood
around (x, y, t) are considered via fuzzy rules that are custom-tailored for the PAMONO
application case. Hence the spatiotemporal information in PAMONO data is exploited. After
converting fuzzy set memberships to crisp decisions, the output is a robust, binary per-pixel
classification Γ(x, y, t) ∈ {0,1}, assigning up and down signals to the positive class and
background pixels to the negative class. This classification is then passed to the segmentation
module described in Section 5.6.

Matching scoresM(x, y, t) are from the interval [0,1] and hence need no extra fuzzification.
However, analogously to the definition of ζ l1,l2isLarge in fuzzy denoising (cf. Equation (5.8)), they
are assigned an initial fuzzy set membership by applying two soft thresholds. All other fuzzy
set memberships are derived from this initial membership. For shorter notation, again m is
used to denote the matching score m =M(xc, yc, tc) at a certain spatiotemporal coordinate
(xc, yc, tc). Given these prerequisites, the initial fuzzy set membership function is defined as

ζs1,s2isPos(m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for m ≥ s2
m−s1
s2−s1 for s1 <m < s2

0 else,
(5.11)

with soft thresholds s1, s2 ∈ R≥0. This set fuzzily characterizes the degree by which matching
score m is regarded as belonging to the positive class, consisting of up/down signals indicative
of a nano-object. The graph of ζs1,s2isPos looks like that of ζ l1,l2isLarge in Figure 5.5, but with the
soft denoising thresholds l1 and l2 replaced with the soft classification thresholds s1 and s2.
Set membership increases with increasing m. The two soft thresholds s1 and s2 are subject
to optimization.

Further application-specific fuzzy rules that build on the ζs1,s2isPos set from Equation (5.11),
evaluated for each coordinate (x, y, t) and a local neighborhood around it, will be presented in
the following [LST+13a; LST+13b]. These rules formalize domain knowledge, obtained from
examining the spatiotemporal structure of nano-object adhesions. Their formal statement
relies on a number of prerequisites which will be given now.

Formal Prerequisites

• In the following statement of fuzzy rules, the fuzzy operators ANDf , ORf and NOTf
from Definition 5.2 are used.

5Terminology associated with fuzzy set theory was introduced as part of fuzzy denoising, cf. the beginning
of Section 5.3.2.

5.4. Time Series Classification via Fuzzy Template Matching 105

• For a given spatiotemporal coordinate (xc, yc, tc), the local neighborhood set LX,Y,T
is defined as the multiset of all matching score values M(x, y, t) that occur in a local
cuboid with side-lengths X,Y,T in the horizontal, vertical and temporal directions,
placed in M with its center at (xc, yc, tc).

• Furthermore, Λ(k,S) denotes the k-th largest element in a multiset S.

Fuzzy Rules

Using these prerequisites and the fuzzy set ζs1,s2isPos from Equation (5.11), a further fuzzy rule
characterizing the positive class can be stated. Its goal is to make the detection of pixels at
the fringe of a nano-object adhesions more robust:

ζs1,s2fringe(m) =m > s1 ANDf ζs1,s2isPos(Λ(15, L7,7,3)). (5.12)

Note that the same implicit coordinates (xc, yc, tc) are used for m =M(xc, yc, tc) and for the
center of the local neighborhood L7,7,3. This rule accounts for the fact that the magnitude of
the Surface Plasmon Resonance (SPR) effect causing the up/down signals around nano-object
adhesions decreases with distance from the point of adhesion. Hence, time series observed
at the fringe of the effect exhibit up/down signals with lower magnitude (cf. center part of
Figure 5.6 and compare pixel brightness of inner versus outer part of nano-object adhesion)
but corrupted by the same level of noise as all other time series. Therefore, their SNR is lower
as e.g. in time series observed in the center of the effect. Lower SNR means a lower matching
score m. The rule in Equation (5.12) allows such time series to “rehabilitate”, based on their
local neighborhood: If m > s1, i.e. if at least the lower fuzzy threshold is met, the time series
membership in ζs1,s2fringe is assigned the fifteenth-highest membership in ζs1,s2isPos observed in a
7 × 7 × 3 local neighborhood. This remedies mediocre matching scores for time series that
reside in a neighborhood with a sufficient number of positive pixels. This is the case for time
series observed at the fringe of the SPR effect, but not for time series in background areas
that attained a matching score m > s1 by chance. Therefore, Equation (5.12) makes detection
more robust by promoting fringe time series. The same effect could be achieved in global
hard thresholding by lowering the threshold. However, in contrast to that, the fuzzy fringe
rule reduces the unwanted “by-catch” of background time series that would be incurred by
lowering a global hard threshold without considering local neighborhoods.

The next fuzzy rule for the positive class synchronizes matching scores for multiple
detections of the same nano-object over time:

ζs1,s2time (m) =m > s1 ANDf ζs1,s2isPos(Λ(1, L1,1,5)). (5.13)

It does so by assigning any time series with m > s1 a membership in ζs1,s2time that is the highest
membership in ζs1,s2isPos , observed over five consecutive sensor images. This realizes a temporal
dilation6 of the matching scores in M , filling temporal “holes” and thus increasing robustness
to noise.

With these three rules for the positive class stated in Equations (5.11) to (5.13), the overall
membership to the fuzzy set of up ∪ down signals is determined as their fuzzy disjunction:

ζs1,s2up∪down(m) = ζs1,s2isPos(m) ORf ζs1,s2fringe(m) ORf ζs1,s2time (m). (5.14)

6The term ‘dilation’ and other morphological operators are discussed in more detail in Section 5.6.1.

106 Chapter 5. Pattern Detector for PAMONO

A final rule is required for the background class, then all classes in Figure 5.6 are captured
by the fuzzy classifier. This rule is defined as

ζs1,s2background(m) =m < s2 ANDf NOTf ζs1,s2isPos(Λ(10, L7,7,3)). (5.15)

It states that background time series have matching scores lower than s2 and that their
degree of membership to the background increases, depending on their neighborhood: The
lower the ζs1,s2isPos set membership of the tenth highest neighboring matching score, the higher
the membership to the background set. Time series with mediocre matching scores below
s2 are thus assigned high membership to the background set if their score is an outlier in a
neighborhood of low matching scores. This removes isolated islands that are smaller than the
SPR effect caused by an attaching nano-object.

Like in the fuzzy denoising method from Section 5.3.2, the set memberships ζs1,s2up∪down and
ζs1,s2background from Equations (5.14) and (5.15) are defuzzified by assigning to each time series
the class with higher degree of set membership, yielding the binary spatiotemporal class mask
Γ(x, y, z) ∈ {0,1}. In Γ, time series belonging to the positive (up ∪ down signal) class are
indicated by value 1, while those belonging to the negative (background) class are indicated
by value 0. This class mask Γ is input to the segmentation module described in Section 5.6.

Summing up, fuzzy time series classification avoids using a single global hard threshold,
but classifies pixels using two soft thresholds s1, s2, while integrating information from local
neighborhoods in all three dimensions of the input data. It aims at making the positive
areas in the class mask Γ more robust against the low SNR in the underlying sensor images.
This in turn makes the shape of polygons to be created by the segmentation module more
robust [LST+13a] and therefore more consistent for polygons delineating nano-objects. More
robust polygon shapes are beneficial in computing the per-polygon features to be described
in Section 6.2: These per-polygon features are computed e.g. as polygon shape descriptors
or as statistics of intensities observed in the area covered by the polygons and are used to
separate true from false positive detector responses.

The parameters arising in fuzzy time series classification are the two soft thresholds
s1, s2 defining the ζs1,s2isPos set from Equation (5.11). A third parameter bclassify

fuzzy ∈ {0,1} controls
whether fuzzy time series classification is enabled (value 1) or disabled (value 0). In case fuzzy
time series classification is disabled, the global hard thresholding described in the following is
used instead.

Alternative to Fuzzy Rules: Global Hard Thresholding

If bclassify
fuzzy is set to zero, the binary class mask Γ is determined by applying a global hard

threshold to the matching scores M . In order to avoid introducing a further parameter to
be optimized, the fuzzy upper threshold s2 assumes the role of this hard threshold: For
M(x, y, t) ≥ s2, Γ(x, y, t) is set to one, otherwise it is set to zero.

5.4.4 Parameters

The parameters that are optimized for the fuzzy time series classification module, along with
the examined ranges of values are:

5.5. Time Series Classification via TI Wavelet Features 107

Time Series Preselection

T ∈ {8, . . . ,32}
an integer determining the length of the temporal sliding window within which time
series are classified (which also determines the length of the matched template and
affects temporal resolution),

h1 ∈ [0.0005,0.1]
a float defining the lower boundary of the interval of time series magnitudes that are
accepted by hard thresholding,

h2 ∈ [0.01,0.2]
a float defining the upper boundary of the interval of time series magnitudes that are
accepted by hard thresholding,

Fuzzy Time Series Classification

bclassify
fuzzy ∈ {0,1}

a boolean that switches between fuzzy time series classification (value 1) and hard
thresholding of matching scores (value 0),

s1 ∈ [0.002,0.8]
a float defining the lower soft threshold of fuzzy time series classification,

s2 ∈ [0.05,1]
a float defining either the upper soft threshold of fuzzy time series classification (in
case bclassify

fuzzy = 1) or the single global hard threshold applied to matching scores (in case
bclassify

fuzzy = 0).

5.5 Time Series Classification via Translation-Invariant (TI)
Wavelet Features

Time series classification via translation-invariant (TI) wavelet features is an alternative to
time series classification via fuzzy template matching as presented in the previous section.
Input, output and the classification task are the same: Time series in the denoised T ⋅ A
estimate are to be classified, separating those that are affected by a nano-object adhesion (up
or down signals) from those that are not (background), cf. Terminology 5.1 and Figure 5.6.
Classification results can again be phrased in terms of a spatiotemporal class mask Γ, serving
as input to the segmentation module described in Section 5.6.

The methodological approach, however, differs strongly from fuzzy template matching. It
was first proposed in [SFL+14], upon which this section is based. Instead of a classifying time
series by defuzzifying fuzzy set memberships that are based on the single feature ‘matching
score’, the approach to be presented now uses a condensed k-Nearest Neighbors (k-NN)
classifier [ZLX09] that operates on multiple features, computed from wavelet coefficients
[CD95]. Training the classifier works as follows: Signal synthesis as presented in Chapter 4
generates a large set of ground truth class-labeled time series. From these, class-labeled wavelet
feature vectors are extracted for training. Data reduction is carried out by coreset-based
k-Means clustering [FGS+13] of the feature vectors, condensing the large synthetic training
set, while maintaining its neighborhood structure in feature space. Coresets [HM04] enable
handling bigger datasets with clustering, while clustering enables handling bigger datasets

108 Chapter 5. Pattern Detector for PAMONO

with the lazily learning k-NN classifier. To restate this more specifically for the PAMONO
scenario, coresets allow clustering big training sets, synthesized from multiple PAMONO
datasets, such that a general k-NN classifier can be trained. Clustering serves to accelerate the
k-NN classifier, which operates on the cluster centers only. This classifier can store knowledge
from multiple datasets, and it is able to generalize to further unseen PAMONO datasets as
demonstrated in Section 5.5.4. The output of the training procedure is a supervised classifier
(k-NN), created from synthetic ground truth that underwent unsupervised data reduction
(k-Means).

The data processed by the classifier are feature vectors computed from wavelet coefficients
of the time series to be classified. Using wavelet-based features follows the goal of achieving
better classification quality and increased robustness to noise. These goals are pursued in
the presented feature extraction by exploiting the following idea: Wavelets separate a signal
into multiple scales, each capturing another level of signal detail. This multiscale nature
of the wavelet transform is utilized to separate noisy scales from signal scales, and features
are computed for each scale, cf. Section 5.5.1. Feature selection can then be applied to
consider only features classifying the data well, i.e. features originating from signal scales, cf.
Section 5.5.2.

In feature extraction for classification, it is desirable that features are invariant to any
information that does not relate to the class label. In PAMONO time series classification,
the point in time when a nano-object attaches to the sensor surface does not relate to the
class of the time series: If an up or down ramp function occurs in the time series, it belongs
to the up or down signal class, independent of the location of the ramp on the temporal axis,
cf. Figure 5.6. Wavelet decomposition enables extraction of features that are invariant to this
information. Different temporal locations of the ramp-like part in an up or down signal can be
regarded as different translations of the ramp across the temporal axis. Translation-invariant
(TI) wavelets are, in the sense defined in Section 5.5.1, invariant to such translations, and thus
provide a foundation for computing TI features. A feature extraction based on such features
has the desirable property that time series affected by nano-objects map to similar points in
feature space, independent of the time the nano-objects appear. This property furthermore
bears the advantage that it is no longer necessary to evaluate the operations applied in the
sliding window for every temporal coordinate, as was done in fuzzy time series classification.
Instead, since not every possible location of the ramp-like part has to be covered, it is possible
to advance the sliding window by its length, conducting the classification procedure only for
each such block of sensor images. This decreases temporal resolution but also computational
burden.

Combining the idea of condensed k-NN with TI feature extraction yields a method for
PAMONO time series classification exhibiting parameters that do not require optimization,
as long as their values are chosen ‘large enough’, cf. Section 5.5.4. This is a considerable
advantage over the fuzzy method from Section 5.4. Furthermore, the method does not require
an ideal template as input, but learns the class concepts from classified training data. As a
last point, the classifier can be trained with data from multiple PAMONO measurements,
which can improve its generalization performance to other unseen PAMONO datasets.

5.5. Time Series Classification via TI Wavelet Features 109

Related Work

Condensing a training set by removing inherent redundancies and similarities is a commonly
applied technique to speed up classification for lazy learners like k-NN [GK79; Alp97; Ang05].
Clustering is one approach for data reduction, and it has been previously applied for condensing
k-NN training data in text classification [ZLX09]. The approach presented in the following
combines this idea with the coreset method, introducing a further stage of data reduction that
is applied before clustering: The BIRCH Meets Coresets (BICO) algorithm [FGS+13] is used
to reduce the input of clustering to a smaller coreset, to which weighted clustering is applied.
The result of weighted clustering of the small coreset is an approximation to the clustering
result for the entire dataset. Coresets thus enable clustering of big datasets that are too large
for exact clustering algorithms. The impact of the approximate nature of the coreset method
on PAMONO classification quality versus training time is analyzed in Section 5.5.4.

Related work concerning TI wavelets as a foundation for feature extraction is rather scarce
[MT01]. One reason for this might be that they were not originally developed for feature
extraction, but for improving wavelet denoising [CD95]. The intention of introducing the
TI property to wavelet denoising was to obtain the same result in the following two cases:
The first case is applying wavelet denoising to a given signal. The second case is applying
a circular shift to that same signal, followed by wavelet denoising, followed by unshifting
the result. For orthogonal (non-redundant) wavelets, the two denoising results differ due to
energy transfer between coefficients on different scales as a side-effect of shifting. For TI
denoising, the results do not differ because energy transfer only occurs between coefficients on
the same scale (which is what encodes the shift). Generally speaking, invariance to translation
means invariance to the location of an entity, which is an advantage in computing features
for classifying that entity, if entity location is not correlated with the class label, as is the
case for the ramp-like functions in PAMONO time series. This advantage has been exploited
e.g. in face recognition, where a non-redundant Discrete Wavelet Transform (DWT) was
used as the basis for approximately TI features [MT01]. These features were computed as
estimates of the power spectrum in a local window. Even though the employed DWT is
non-redundant and thus not translation-invariant, the estimated power spectra approximately
are. In contrast, [LLS08] use raw wavelet coefficient values as features and ensure the TI
property by redundant DWT and signal registration. The approach proposed in the following
combines the use of TI wavelet coefficients with feature extraction. This serves the purposes
of dimensionality reduction and increases robustness to noise.

Section Overview

The remainder of this section is organized bottom-up as follows: Section 5.5.1 presents
the extraction of TI features from wavelet coefficients. Section 5.5.2 describes a feature
ranking technique and, building on that, a feature selection strategy. Section 5.5.3 covers
the training procedure for accelerated k-NN by means of a fast coreset-based clustering that
condenses the training set. Section 5.5.4 demonstrates performance of these methods in
classifying PAMONO time series. Section 5.5.5 compares these performances to fuzzy time
series classification, and finally, Section 5.5.6 draws conclusions from this comparison.

110 Chapter 5. Pattern Detector for PAMONO

0 200 400

Coefficient Index

0

0.05

0.1

0.15

C
o
e
ffi
c
ie
n
t
V
a
lu
e

(a) Up Signal

0 200 400

Coefficient Index

0

0.05

0.1

0.15

C
o
e
ffi
c
ie
n
t
V
a
lu
e

(b) Down Signal

0 200 400

Coefficient Index

0

0.05

0.1

0.15

C
o
e
ffi
c
ie
n
t
V
a
lu
e

(c) Background

Figure 5.7: Sorted Wavelet Coefficient Matrices. Examples of W for time series from the three classes.
Scales (i.e. rows of W) are ordered coarsest (back) to finest (front). Positions on the horizontal
axis are column indices in W. Classes differ in coefficient magnitude and slope, especially for
coarser scales, which is exploited by the features in Equations (5.18) to (5.25). Figures adapted
from [SFL+14].

5.5.1 Translation-Invariant Feature Extraction

Translation-invariant (TI) features are desirable in PAMONO time series classification because
they make the feature space representation of a time series independent of the point in time
when a nano-object attaches to the sensor surface. That means feature vectors are independent
of the location of the upward or downward ramp-like part on the temporal axis, cf. Figure 5.6.
After background elimination, PAMONO time series approximately fulfill the circularity
condition assumed for the TI wavelets proposed by Coifman and Donoho [CD95] which
are utilized here: The ramp-like, characteristic part of the signal has finite support7 at an
irrelevant location, preceded and followed by uniform noise. Hence time series with different
locations of the ramp can be approximately regarded as circular shifts of each other if the
uniform noise is regarded as ‘basically the same’ everywhere in the series. Neglecting boundary
cases, non-circularity solely affects the noise portion of the series: Uniform sensor noise is
shifted out on one side, and different uniform sensor noise is shifted in on the other side. In a
strict sense, this difference in noise violates circularity. For practical purposes, however, it
does not adversely affect feature computation. The statement that the circularity condition
assumed for the TI wavelets holds approximately denotes this specific circumstance.

For extracting TI features from a time series, the following preprocessing is applied:
To remove constant intensity offsets, the series mean is subtracted from each value. Let
v ∈ RT denote the values of a single time series after this subtraction. Let Ŵ ∈ RS×T denote
the coefficient table of the TI wavelet transform from [CD95], using the maximum number
S = log(T) of scales and the Haar wavelet basis. The Haar basis is used throughout the entire
section because it proved superior in terms of classification Accuracy and computation time
among 27 wavelet bases that were examined, cf. the comparison in Appendix B for details.
The S × T matrix Ŵ is a non-orthogonal decomposition of the time series v into S scales

7Background elimination is required for the TI property to hold because background elimination turns
a step function into a ramp-like function with finite support. This finite support makes the time series
approximately fulfill the circularity condition required for the TI property [CD95]. Background elimination
parameters applied to the set of training time series must be the same as for the input time series to be
classified.

5.5. Time Series Classification via TI Wavelet Features 111

with T coefficients per scale. The scales with smaller index represent coarser structures of v,
while those with larger index represent finer details. The notion of translation-invariance that
applies to Ŵ is that a circular shift of the series v manifests solely as per-scale permutations
in Ŵ, i.e. for each of the S rows of Ŵ, the T entries are permuted. Note that there are
neither permutations between coefficients on different scales, nor is there energy-transfer
between any coefficients. The per-scale permutations are the way in which circular shifts
of the input time series are encoded by the coefficient table. Since the goal is computing
features that are invariant to shifts of the input series, this locational information must be
eliminated. This is done by taking the absolute values of all coefficients in Ŵ, followed by
sorting each scale separately by descending absolute coefficient value. The resulting matrix
of sorted absolute values is called W. Figure 5.7 shows examples of W for series v from
different classes. For any permutation of coefficients in Ŵ, the same W will result, and hence
the locational information has been removed. Feature extraction is carried out with respect
to W as to be detailed now.

Features of Translation-Invariant Wavelet Coefficients

Let W = [ws,t]s=1...S,t=1...T be the coefficient table defined above, where s is the scale index
and t is the coefficient index. Furthermore, let

µ (ws,○) =
1
T

T

∑
t=1
ws,t (5.16)

yield the mean value over the variable indicated by the wildcard symbol ○, for a fixed value
of the symbol s. The according standard deviation is defined analogously as

σ (ws,○) =

¿
ÁÁÀ 1

T

T

∑
t=1

(ws,t − µ (ws,○))2. (5.17)

In the following equations, superscript indices are feature names, while the subscript s
indicates the scale on which a feature is computed. Given these conventions, the TI features
to be computed from the sorted wavelet coefficient matrix W are defined as follows: Feature
f1
s is the mean value of the coefficients on scale s:

f1
s = µ (ws,○) . (5.18)

Feature f2
s normalizes f1

s by the mean coefficient value over all scales:

f2
s =

f1
s

µ (w○,○)
. (5.19)

Feature f3
s is the standard deviation of the coefficients on scale s,

f3
s = σ (ws,○) , (5.20)

while feature f4
s normalizes f3

s by the accumulated coefficient standard deviation over all
scales:

f4
s =

f3
s

∑r σ (wr,○)
. (5.21)

112 Chapter 5. Pattern Detector for PAMONO

For computing the remaining four features, a linear approximation of the sorted wavelet
coefficients ws,○ on each scale s is computed. This is motivated by the fact that coefficients
on certain scales show a linear behavior for the background class, while being less linear
and exhibiting varying slope for the up and down signal class, cf. Figure 5.7. Therefore, the
remaining four features rely on approximation criteria and slope. Let rs = [rs,t]t=1...T denote
T discrete samples of a regression line approximating the sorted wavelet coefficients ws,t for a
fixed scale s. The line is defined as asx+bs, where as and bs are computed as the minimizers of
accumulated squared approximation error: argminas,bs = ∑t(ws,t−(asxt+bs))2. The sampling
points xt are chosen at the locations of the coefficients ws,t. Hence rs,t = asxt + bs is the linear
approximation of coefficient ws,t. Given these prerequisites, f5

s is the slope of the regression
line,

f5
s = as , (5.22)

and f6
s is the linear approximation of the largest coefficient ws,1:

f6
s = asx1 + bs . (5.23)

Feature f7
s is the accumulated absolute deviation between coefficients ws,t and their linear

approximations rs,t, normalized by the accumulated coefficient set:

f7
s =
∑t ∣ws,t − rs,t∣
∑tws,t

. (5.24)

Feature f8
s is defined analogously to f7

s but with sums replaced by standard deviations:

f8
s =

σ (ws,○ − rs,○)
σ (ws,○)

. (5.25)

Note that the differences in the numerator of f8
s are taken only between coefficients ws,t and

approximations rs,t with the same index t. To prevent numerical issues, a small constant ε
on the order of computational working precision is added to each denominator.

In order to balance the impact of the different features during the distance computations
occurring in subsequent processing stages, the features need to be normalized accordingly.
The employed normalization method is shifting and scaling the range of each feature to the
unit interval [0,1]. Shifts and scale factors are determined from the training dataset and also
applied to any other dataset, the resulting classifier is applied to.

5.5.2 Feature Ranking and Selection

The employed feature ranking and selection method is based on computing a figure of merit for
each feature in a supervised fashion. Let g = f js , s ∈ {1, . . . , S} , j ∈ {1, . . . ,8} be an abbreviation
for the single scalar feature under consideration. Let gcik , k ∈ {1, . . . ,N ci} , i ∈ {1, . . . ,C} denote
the values that feature g attains over the N ci examples of class ci in the training dataset,
where C is the total number of classes.

The basic measure in computing the figure of merit of a feature g is the mean absolute
distance dca,cb between the feature values of class ca and the mean feature value of class cb:

dca,cb = µ (∣gca○ − µ (gcb○)∣) . (5.26)

5.5. Time Series Classification via TI Wavelet Features 113

Using Equation (5.26), the figure of merit mg of feature g is computed as the following ratio:

mg =
∑cb∑ca≠cb d

ca,cb

∑ci dci,ci
. (5.27)

The numerator of mg accumulates over all classes cb, in how far the mean feature value for
class cb differs from the feature values for all other classes ca ≠ cb. For features that separate
the classes well, this value is large. The denominator accumulates over all classes, in how far
feature values vary within a class, hence smaller is better. The features g are then sorted in the
order of descending merit mg, giving a feature ranking assigning rank one to the best feature,
rank two to the second-best and so forth. For determining the final sequence of features, the
ranking idea by Kuncheva [Kun07] is applied within a ten-fold cross-validation [Koh95]: The
ranks attained by each feature are accumulated over the different folds, and the features are
sorted in the order of ascending accumulated ranks. Kuncheva indices [Kun07] are computed
over this cross-validation in order to evaluate feature selection stability. Finally, the first F
of these features are selected to be used for classification, where F is chosen to maximize the
mean classification performance in a second cross-validation using the rank-sorted features
and incrementally increasing the candidate for F . In all experiments conducted within this
section, Accuracy (cf. Appendix A) over class-balanced datasets is the employed measure of
classification performance.

5.5.3 Condensed k-NN Using Fast Coreset Clustering

This section describes how the k-Nearest Neighbors (k-NN) classifier [HTF09] is accelerated
by computing it from cluster centers of the training data, thus defining a ‘condensed k-NN’
classifier [ZLX09]. Clustering serves as a preprocessing step in this procedure and will be
covered in the first part of this section. It is accelerated for large input sets by using the
coreset-based BICO approach [FGS+13]. The second part of this section then depicts the
training procedure and the application of the obtained condensed k-NN classifier, making use
of the clustering results.

Fast Clustering with Coresets

Clustering is usually defined as partitioning a set of objects into groups, such that objects
in the same group are similar and objects in different groups are dissimilar. The k-Means
problem is a well-studied clustering problem defining similarity via Euclidean distance. For
two vectors p = (p1, . . . , pF) ,q = (q1, . . . , qF) ∈ RF , let ∥p − q∥ ∶=

√
∑Fi=1 (pi − qi)2 denote their

Euclidean distance. Given an N × F matrix P = [p1; . . . ; pN] where each pi ∈ RF is a row
vector, the k-Means problem asks for a Km × F matrix Q = [q1; . . . ; qKm] of Km cluster
centers that minimize the sum of squared distances of all vectors in P to their nearest cluster
center in Q. Typically the number Km of desired cluster centers in Q is chosen considerably
smaller than the number N of input vectors in P. Formally, the k-Means problem can be
stated as the following minimization with result matrix Q:

argmin
Q∈RKm×F

cost(P,Q), (5.28)

with

cost(P,Q) ∶= ∑
pi∈P

min
qj∈Q

∥pi − qj∥2
. (5.29)

114 Chapter 5. Pattern Detector for PAMONO

Note that the min-function in Equation (5.29) finds the distance of the nearest cluster center
in a given Q, while the argmin in Equation (5.28) searches the space of all possible Km × F
cluster center matrices Q.

The cost function in Equation (5.29) is a special case of the weighted k-Means cost
function, in which each vector can be weighted by a function w∶ RF → R≥0, i.e.

costw(P,Q) ∶= ∑
pi∈P

w(pi) min
qj∈Q

∥pi − qj∥2 (5.30)

is minimized. Using a k-Means cost function as the objective for condensing the training
set is a natural choice when k-NN serves as the classifier because both algorithms decide a
vector’s membership to a cluster, respectively class, via Euclidean distance.

In practice, Lloyd’s algorithm [Llo82] is frequently used to minimize Equation (5.29),
respectively its weighted variant Equation (5.30). It is an iterative algorithm converging to a
local optimum after a potentially exponential number of steps. The k-means++ algorithm
by Arthur and Vassilvitskii [AV07] is an improvement of Lloyd’s algorithm, yielding an
O(logKm) approximation guarantee. Its runtime is similar to that of Lloyd’s algorithm.
Both algorithms do not scale well and are hence time-consuming for large sets of input data.

One way of addressing this problem is to construct a small summary of the input set of
vectors first and to cluster that summary instead. Such a summary can be computed in terms
of a coreset: A (Km, ε)-coreset for Km desired cluster centers and approximation ratio ε is
a small weighted set of vectors S ∈ RN̂×F that ensures that the weighted clustering cost of
S for any set of Km cluster centers Q ∈ RKm×F is a (1 + ε)-approximation of the cost of the
original input P ∈ RN×F [HM04]:

∣ costw(S,Q) − cost(P,Q)∣ ≤ ε cost(P,Q) . (5.31)

Here w∶ RF → R≥0 is the weight function, and the number N̂ of vectors in the coreset S may
be considerably smaller than the number N of vectors in the original dataset P. Since large
sets of data may not fit into main memory, and short construction times are crucial, coresets
are often computed in a streaming setting. The BICO (BIRCH Meets Coresets) algorithm
detailed in [FGS+13] is a streaming-capable algorithm for computing coresets. It combines
the data structure underlying the BIRCH (Balanced Iterative Reducing and Clustering Using
Hierarchies) algorithm [ZRL97] with the idea of coresets as defined above. It is used in the
following, to reduce the time taken for clustering large input datasets. The subsequent text
describes how BICO is integrated into the training procedure of k-NN, yielding a condensed
k-NN.

Training and Application of Condensed k-NN

The input of the training procedure for condensed k-NN is an N × F matrix G, where rows
denote training examples and columns denote normalized features, cf. Section 5.5.1. F is
the number of features selected as according to Section 5.5.2. N is the sum N = ∑Ci=1N

ci ,
giving the total number of examples over the C different classes {c1, . . . , cC}. In training,
class labels are known and can hence be used to partition G into C per-class matrices Gci .
For each class ci separately, the BICO approach is used to compute a coreset Sci of Gci ,
allowing for very large input sets. Subsequently, weighted k-means++ is used to compute
a clustering from each coreset Sci , condensing the examples in Gci to Km ≪ N ci cluster

5.5. Time Series Classification via TI Wavelet Features 115

centers Hci . The union H = [Hc1 ; . . . ; HcC] of the per-class cluster centers is then used as
the condensed training set for k-NN. The number Km of cluster centers per class is chosen as
to be tractable in a lazy learning approach like k-NN and can furthermore be exploited to
achieve class balancing, i.e. equal prevalence of condensed examples over all classes in H.

Applying the learned classifier to unlabeled input works as follows: The raw input data is
preprocessed like the training set, using the same feature normalization and selection. The
resulting feature vectors are classified using k-NN with Euclidean distance metric on the
condensed training set H. The number Kn of nearest neighbors in k-NN is not to be confused
with the number Km of cluster centers in k-Means. The output of this k-NN classifier consists
of predicted labels for the unlabeled input.

5.5.4 Performance

Three variants of the PAMONO time series classification task were examined to validate the
proposed methods: Task 1 is the three-class separation of time series from the up signal,
down signal and background classes (cf. Figures 5.6 and 5.7). Task 2a is the separation of the
union of the up and down signal classes, denoted as up ∪ down, from the background class,
i.e. task 2a is the same classification task as solved by fuzzy template matching in Section 5.4.
Task 2b is the separation of the up signal from the background class only. It can be regarded
as a variant of task 2a: If time series from the down signal class were present in the input, as
is the case for real data, their classification as up signals or background is not penalized in
task 2b, hence this corresponds to a scenario where classes assigned to down signals do not
matter.

The tasks were enumerated in the order of decreasing difficulty and increasing practical
importance: For nano-object detection, it is most important to separate the up signals related
to nano-object adhesions from the background related to empty regions (task 2b). Correct
classification of the down signal class is less important because if the up signals arising in the
center of a nano-object adhesion and in the concentric rings around it (cf. Figure 5.6) are
classified correctly, the burrs and holes possibly arising at the down signals in between those
rings can be fixed by morphological closing, cf. [GW07] and Section 5.6.1. Uniting the up
and down signal classes penalizes the classification of either as background, but like fuzzy
template matching it makes no distinction between up and down signals (task 2a). The most
difficult task is to correctly separate all three classes (task 1), which is of minor practical
interest as the goal is only covering the extent of a nano-object adhesion, not determining
signal directions. It was considered to examine the capabilities of the proposed method.

Experimental validation was conducted using a total of N = 300000 labeled PAMONO
time series as input. Each of the C = 3 classes was represented with 100000 examples, making
the dataset balanced for task 1. For task 2a, every other example from the up and down class
was omitted, such that there were 100000 examples from the union class of up and down
signals, and 100000 examples from the background class. For task 2b, all examples from the
down signal class were omitted. Hence all tasks were examined for class-balanced data, i.e.
the number of examples in each class to be distinguished is the same. The labeled examples
were obtained using the signal model from Chapter 4 [SLW+14], i.e. real sensor images and
nano-object templates were used to create synthetic time series. Three real datasets were used
as the basis for this synthesis: 200 nm nano-objects on two differently severe levels of noise
(“200 nm HQ” and “200 nm LQ” in Table 7.1) and one dataset with 100 nm nano-objects

116 Chapter 5. Pattern Detector for PAMONO

Table 5.1: Accuracy for Varying N̂ and Km. The table shows the impact on Accuracy of varying the
coreset size N̂ and the number Km of cluster centers computed per class.

Configuration Task 1 Task 2a Task 2b
N̂ = 7500,Km = 1500 0.86980 0.95407 0.99889
N̂ = 7500,Km = 150 0.86532 0.95156 0.99872
N̂ = 7500,Km = 3000 0.87096 0.95339 0.99898
N̂ = 75000,Km = 1500 0.87234 0.95477 0.99896

(“100 nm HQ” in Table 7.1). All datasets are represented in equal proportions within the
considered input. The temporal length of the considered time series is T = 512, resulting in
72 features available for selection (8 features on S = log(T) = 9 scales).

The input examples (300000 or 200000, depending on the task) were partitioned into a
training and test set, balancing them with respect to source datasets and class labels, i.e.
each dataset and each class label is represented in equal proportions in both:

• The training set contains 2/3 of these examples and is used to train the condensed
k-NN classifier. Furthermore, it is used for feature and parameter selection: A ten-fold
cross-validation [Koh95], stratified with respect to class labels, is conducted, within
which Kuncheva ranks [Kun07] as according to Section 5.5.2 are computed, along with
mean Accuracy over all folds.

• The test set contains the remaining 1/3 of examples and is used solely for performance
assessment.

Accuracy was selected as the performance metric, due to its capability to assess quality in
two- and three-class classification tasks, and furthermore for its property of considering all
entries in the confusion matrix of the classification results. Accuracy is defined in Appendix A.
It measures the ratio of correctly classified examples among all classified examples. The
class-balanced nature of the input datasets equalizes the misclassification penalty over the
different classes.

Accuracy and Parameters

The number of cluster centers per class was fixed at Km = 1500 (1.5% of the number of
examples per class in task 1) and the coreset size was fixed at N̂ = 7500, i.e. at 5Km. For
determining the number F of best features to be selected and the number Kn of neighbors in
k-NN, a grid search was conducted over a ten-fold cross-validation [Koh95] on the training
set. F and Kn were chosen to maximize mean Accuracy over the folds. Figure 5.8 plots
the achieved mean Accuracy over parameter values for each task. The bars on the right
show that for each task, Accuracy is in a different range, with task 2b exhibiting values close
to 1. The spread of Accuracy over parameter space decreases with decreasing task difficulty.
Accuracy saturates with increasing parameter values, meaning that F and Kn just need to
be ‘large enough’. In practice, this means that F and Kn need not be optimized to obtain a
well-performing PAMONO time series classifier.

After learning such a classifier from the 2/3 training set, the following Accuracy values
were attained on the unseen 1/3 test set: task 1: 0.86980, task 2a: 0.95407, task 2b: 0.99889
(first line of Table 5.1). For a more detailed view on classification performance, confusion

5.5. Time Series Classification via TI Wavelet Features 117

0

60
30

40

F

0.5
M
ea
n
A
cc
u
ra
cy

in
C
ro
ss
-V

a
li
d
a
ti
o
n

20

Kn

20
10

1

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

(a) Classification Task 1: Up vs. Down vs. Background

0

60
30

40

F

0.5

M
ea
n
A
cc
u
ra
cy

in
C
ro
ss
-V

a
li
d
a
ti
o
n

20

Kn

20
10

1

0.9

0.91

0.92

0.93

0.94

0.95

(b) Classification Task 2a: (Up ∪ Down) vs. Background

0

60
30

40

F

0.5

M
ea
n
A
cc
u
ra
cy

in
C
ro
ss
-V

a
li
d
a
ti
o
n

20

Kn

20
10

1

0.988

0.99

0.992

0.994

0.996

0.998

(c) Classification Task 2b: Up vs. Background

Figure 5.8: Impact of Parameter Choice. Mean Accuracy in ten-fold cross-validation over the number
F of best features and the number Kn of neighbors to be used in k-NN is plotted for the three
classification tasks. Only the choice of very small parameter values has an (adverse) effect on
mean Accuracy. Optimization of these parameters is not necessary as long as they are chosen
‘large enough’. Figures adapted from [SFL+14].

118 Chapter 5. Pattern Detector for PAMONO

Table 5.2: Confusion Matrices for Test Set. Confusion matrices for the three classification tasks are
shown, as attained on the test set that was balanced with respect to the source datasets and
class labels. Parameters were Km = 1500 cluster centers per class, computed from coresets of size
N̂ = 7500. The numbers of features F and neighbors Kn were chosen by grid search, cf. Figure 5.8,
and they differ by classification task. Matrix entries consist of absolute example counts, as well as
rounded relative ratios in brackets. The number of examples for task 1 is 100000 because a 1/3
test set of 300000 examples in total is considered. Tasks 2a and 2b consider fewer examples due
to class balancing.

(a) Classification Task 1: Up vs. Down vs. Background

Ground Truth
Up Down Background ∑

Prediction
Up 30848 (0.31) 5852 (0.06) 0 (0.00) 36700 (0.37)
Down 2484 (0.02) 24530 (0.25) 1731 (0.02) 28745 (0.29)
Background 1 (0.00) 2952 (0.03) 31602 (0.32) 34555 (0.35)

∑ 33333 (0.33) 33334 (0.33) 33333 (0.33) 100000 (1.00)

(b) Classification Task 2a: (Up ∪ Down) vs. Background

Ground Truth
Up ∪ Down Background ∑

Prediction
Up ∪ Down 31276 (0.47) 1005 (0.02) 32281 (0.48)
Background 2057 (0.03) 32328 (0.48) 34385 (0.52)

∑ 33333 (0.50) 33333 (0.50) 66666 (1.00)

(c) Classification Task 2b: Up vs. Background

Ground Truth
Up Background ∑

Prediction
Up 33281 (0.50) 22 (0.00) 33303 (0.50)
Background 52 (0.00) 33311 (0.50) 33363 (0.50)

∑ 33333 (0.50) 33333 (0.50) 66666 (1.00)

matrices for all three tasks are provided in Table 5.2. The confusion matrix for task 1
shows that the largest part of class confusion arises from the down signal class: Here, false
classifications of down signals are responsible for approximately nine percent loss in Accuracy,
while the two other classes taken together cause only four percent. The largest portion of this
error is due to down class examples that are assigned to the up class. Confusion between the
up and background class is particularly rare: One up example was erroneously classified as
background, and no background examples were assigned to the up class. Regarding task 2a,
more up ∪ down examples were confused with the background class than the other way around,
a property which holds analogously for task 2b with the up and background class. In task 2b,
however, the number of confused examples is considerably smaller: 74 out of 66666 examples
are classified incorrectly, again confirming that the primary source of misclassification is the
down signal class, which is not considered in task 2b.

5.5. Time Series Classification via TI Wavelet Features 119

Runtime

Runtimes, as observed with an Intel® Core™ i7-2600 at 3.4 GHz (cf. also System Specifica-
tion 7.1 in Section 7.3.6), were as follows: Clustering the 2/3 training set takes approximately
77 s, averaging over the tasks. This involves applying BICO and k-means++ for each class
using coreset size N̂ = 7500. Applying the thus learned k-NN classifier based on the trained
Km = 1500 cluster centers per class to the 1/3 test set takes approximately 17 s, averaging
over the tasks. The bottleneck is feature computation, which is not included in the numbers
given above. Feature computation consists of computing the TI wavelet transforms of all
time series and extracting the features in Equations (5.18)–(5.25) from them over all scales of
the transforms. It must be carried out before both, classifier training via clustering and its
application via k-NN. In a nonparallel MATLAB implementation, TI wavelet computation
and feature extraction take 3258 s in total for 100000 time series of length T = 512. This
time is dominated by the computation of the TI wavelet tables Ŵ, requiring approximately
3/4 (2480 s) of the overall computation time. To attain real-time capability for a PAMONO
dataset with 100000 spatial pixel coordinates (i.e. 100000 time series to be processed every T
images), classification must be finished within the time taken to record the next T sensor
images. At a recording rate of 20 images per second and temporal block size T = 512, at
most 25.6 s are available for feature computation and k-NN application, thus ruling out the
approach for real-time application in its current implementation.

The k-NN classifier can be accelerated by reducing the number Km of cluster centers per
class in its training data. Reducing Km from 1500 to 150 decreases k-NN application time
from 17 s to 2 s, with minor decreases in Accuracy, compare lines one and two in Table 5.1.
Alternatively, a non-lazy learner like those described in Section 6.6 can be used. With k-NN
time reduced to 2 s, 23.6 s are left for feature computation. As it takes 3258 s in the given
nonparallel MATLAB implementation, a speedup of at least 140 is required to achieve
real-time capability. This hints at a GPU implementation of TI wavelet transformation and
feature extraction. Both algorithms process time series independently, and time series length
(e.g. T = 512) does not preclude them from being processed in the local memory of the GPU’s
multiprocessors. Hence, a massively parallel implementation on a GPU is conceivable, albeit
not being subject of this thesis.

Doubling the number Km of computed cluster centers from 1500 to 3000 yields a mi-
nor increase in Accuracy, compare lines one and three8 in Table 5.1. Runtime of k-NN
approximately doubles from 17 s to 29 s, averaging over the tasks.

Due to the fact that for classifier application the runtime of clustering during training is
not important, another experiment was conducted that invested more runtime on this end:
The coreset size N̂ was increased from 7500 to 75000. Clustering time increased considerably
from 77 s to 2427 s, while the increase in Accuracy was slightly larger than for increasing Km

to 3000, except for task 2b, where Accuracy remains nearly unchanged, indicating saturation,
cf. last line of Table 5.1.

Feature Ranking and Selection

Feature ranking was carried out as described in Section 5.5.2. Figure 5.9 shows the Kuncheva
ranks (lower means ‘more relevant’) as attained by the different features on all scales,

8For task 2a, Accuracy with Km = 3000 decreases but is higher than for Km = 150.

120 Chapter 5. Pattern Detector for PAMONO

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

0

0.005

0.01

0.015

0.02

0.025

Figure 5.9: Kuncheva Ranks of Features. Kuncheva ranks (lower is more relevant) as attained by all
features on all scales are displayed. Scales are ordered coarse (left) to fine (right) for each feature
f i. Figure adapted from [SFL+14].

normalized by the sum of all ranks over all folds (vertical axis). The three most important
features are located on the coarsest scale and exhibit strictly decreasing relevance for finer
scales. Two of them (f5

s and f6
s) are based on the regression line. The normalized versions f2

s

and f4
s of f1

s and f3
s favor finer scales. The approximation-error-based features f7

s and f8
s are

comparatively irrelevant on all scales. Note that Figure 5.9 shows results for classification
task 1; for the other tasks, the results are qualitatively the same.

Figure 5.10a plots feature selection stability in terms of the mean Kuncheva indices
attained over the ten-fold cross-validation. Kuncheva indices are above 0.93 for selecting
between 10 and 60 features for all classification tasks (task 1: short dashes, task 2a: long
dashes, task 2b: solid line). This indicates stability of the selected feature sets.

Figure 5.10b illustrates that the underlying feature ranking is meaningful in terms of
Accuracy on the unseen test set: Each feature was used in isolation to classify the test
set, using the proposed method. The attained Accuracy was plotted over the index that
feature had in Kuncheva’s ranking. Accuracy decreases approximately linearly with increasing
Kuncheva rank. Note that seemingly high Accuracy can already be attained using only
the single best feature. This particularly applies to task 2b. However, comparing Accuracy
attained by that feature to the first line of Table 5.1 which shows results for using all selected
features, it can be seen that single feature Accuracy falls short of the possibilities: Accuracy
0.80018 is attained for task 1 (all selected features: 0.86980), 0.91764 for task 2a (all selected
features: 0.95407) and 0.99370 for task 2b (all selected features: 0.99889). Comparing these
values to the ranges displayed in Figure 5.8, they rank around the midfield.

Robustness to Noise

In order to assess robustness of the features to noise in the input, experiments with artificial
noise were conducted. The standard deviation of each input time series was computed, and
the mean of these values was used as an estimate me of average signal magnitude. Then
the interval [0,20me] was equidistantly sampled, and for each sample mi, zero-mean, unit
variance Gaussian noise was scaled by mi/me and added to the already noisy original input
dataset, yielding a noisier dataset. For each of the resulting noisier datasets, a classifier
was trained using the proposed method, and test set Accuracy was measured for each
classification task. Parameters were chosen as above: Km = 1500 cluster centers per class

5.5. Time Series Classification via TI Wavelet Features 121

0 20 40 60

Number of Regarded Best Features

0

0.2

0.4

0.6

0.8

1

M
ea
n
K
u
n
ch
ev
a
’s

In
d
ex

O
v
er

C
ro
ss
-V

a
li
d
a
ti
o
n

Up vs. Background

(Up ∪ Down) vs. Background

Up vs. Down vs. Background

(a) Kuncheva Indices

0 20 40 60

Rank of Single Selected Feature

0

0.2

0.4

0.6

0.8

1

A
cc
u
ra
cy

o
n
T
es
t
S
et

Up vs. Background

(Up ∪ Down) vs. Background

Up vs. Down vs. Background

(b) Single-feature Accuracy Values

0 5 10 15 20
Noise Magnitude
Signal Magnitude

, i. e. mi

me

0

0.2

0.4

0.6

0.8

1

A
cc
u
ra
cy

o
n
T
es
t
S
et

Up vs. Background

(Up ∪ Down) vs. Background

Up vs. Down vs. Background

(c) Robustness to Noise

Figure 5.10: Kuncheva Indices, Single-Feature Accuracy Values and Robustness to Noise. The
plots in this figure show results for all three considered time series classification tasks. The
three-class task ‘up vs. down vs. background’ is indicated by short yellow dashes. The two-class
task ‘(up ∪ down) vs. background’ is indicated by long red dashes, while the ‘up vs. background’
task is indicated by a solid blue line. (a) shows Kuncheva indices attained for increasing the
number of best features to select. Values closer to one indicate a higher stability of the selected
set of features. (b) shows Accuracy values attained for using a single feature for classification.
For increasing Kuncheva rank of the single feature, Accuracy decreases, thus validating the
feature selection strategy. (c) illustrates robustness of the overall classification method to noise.
The horizontal axis is the factor by which the magnitude of artificially added noise exceeds the
magnitude of the already noisy input time series. Figures adapted from [SFL+14].

122 Chapter 5. Pattern Detector for PAMONO

Table 5.3: Confusion Matrices for 100 nm Test Set. Confusion matrices for the three classification
tasks are shown, as attained for training on two 200 nm datasets and using a 100 nm dataset as
the test set, to which the tabulated results refer. Like with Table 5.2, parameters were Km = 1500
cluster centers per class, computed from coresets of size N̂ = 7500. The numbers of features F and
neighbors Kn were chosen by grid search, cf. Figure 5.8, and differ by classification task. Matrix
entries consist of absolute example counts, as well as rounded relative ratios in brackets. The
number of examples for task 1 is 100000 because 100000 time series from the 100 nm dataset were
considered. Tasks 2a and 2b consider fewer examples due to class balancing.

(a) Classification Task 1: Up vs. Down vs. Background

Ground Truth
Up Down Background ∑

Prediction
Up 31069 (0.31) 349 (0.00) 0 (0.00) 31418 (0.31)
Down 2264 (0.02) 27528 (0.28) 2091 (0.02) 31883 (0.32)
Background 0 (0.00) 5457 (0.05) 31242 (0.31) 36699 (0.37)

∑ 33333 (0.33) 33334 (0.33) 33333 (0.33) 100000 (1.00)

(b) Classification Task 2a: (Up ∪ Down) vs. Background

Ground Truth
Up ∪ Down Background ∑

Prediction
Up ∪ Down 29492 (0.44) 1307 (0.02) 30799 (0.46)
Background 3842 (0.06) 32026 (0.48) 35868 (0.54)

∑ 33334 (0.50) 33333 (0.50) 66667 (1.00)

(c) Classification Task 2b: Up vs. Background

Ground Truth
Up Background ∑

Prediction
Up 33315 (0.50) 172 (0.00) 33487 (0.50)
Background 18 (0.00) 33161 (0.50) 33179 (0.50)

∑ 33333 (0.50) 33333 (0.50) 66666 (1.00)

were computed, each from a coreset of size N̂ = 7500 = 5Km, and the numbers F of features
and Kn of neighbors were chosen to maximize mean Accuracy in cross-validation, as plotted
in Figure 5.8. Figure 5.10c plots the obtained Accuracy values over mi/me. The values for
zero noise provide a baseline for each classification task. Results deteriorate slowly with
increasing noise, which is especially true for task 2b (solid line), where noise with up to four
times the magnitude of me causes only minor loss. From there on, the slope of Accuracy
loss increases, indicating the tolerance limit of the method. It decreases again, starting at
approximately twelve times more noise than signal, and for each task converges to the limit of
random guessing for the respective task (1/2 for the two-class tasks and 1/3 for the three-class
task; balanced class distributions).

5.5. Time Series Classification via TI Wavelet Features 123

Generalization Across Datasets

All previous evaluations assessed the generalization performance of the proposed method on
a 1/3 test sample, balanced with respect to three different PAMONO measurements used as
the data source for synthesizing the labeled time series. That means the training as well as
the test set contain information from all three measurements/datasets in equal proportions.
In order to assess generalization performance across datasets and thus across measurement
conditions, a dataset with 100 nm nano-objects was used as the test set, while the classifier
was trained solely on two 200 nm datasets. In this scenario, the following Accuracy values
were attained (values in brackets repeat line one of Table 5.1 for comparison): task 1: 0.89839
(0.86980), task 2a: 0.92277 (0.95407), task 2b: 0.99715 (0.99889). Comparing the confusion
matrices for the 100 nm test set in Table 5.3 to the previous one in Table 5.2 explains why in
task 1, Accuracy is better for the 100 nm case: Fewer down signals are erroneously classified
as up signals, pointing out that 100 nm down signal feature vectors are located further away
from 200 nm up signal cluster centers than the mixed down signals are separated from the
mixed up signal cluster centers in the dataset from Table 5.2. They are, however, located
closer to background cluster centers, as can be seen from the increased confusion of down
signals as background. Both effects can be explained by the lower amplitudes in 100 nm
signals due to the size-dependence of the SPR effect (cf. Section 2.2): 100 nm down signals
are less similar to 200 nm up signals and more similar to background because their amplitudes
are smaller, pulling them away from the high amplitudes in 200 nm up signals and pushing
them closer to the low amplitudes in background signals that depend solely on SNR. This
also explains the increased confusion between the up ∪ down and the background class in
task 2a: Down signals are more likely to be classified as background. On the other hand,
background time series are not affected by nano-object size and look more similar across
datasets, explaining the nearly unchanged confusion of background as up ∪ down signals.
When comparing task 2b to task 1 in Table 5.3, it is noticeable that there is zero confusion
in both directions between the up and background class in task 1, but a minor increase in
confusion in task 2b. This indicates that the examples that were confused in task 2b end up
in the down class in task 1.

5.5.5 Comparison to Fuzzy Template Matching

A comparison between the TI wavelet feature-based time series classification from Section 5.5
and the fuzzy template matching-based time series classification from Section 5.4 was con-
ducted in order to make a choice between the two. To this end, the fuzzy template matching
method was applied to the same dataset as was used in Section 5.5.4 to evaluate the TI
wavelet feature-based method.

The parameters of fuzzy template matching, as listed in Section 5.4.4, were optimized
by conducting a 5000 trials random search, and runtime as well as Accuracy were measured.
Parameters of the modules that precede time series classification in Figure 5.1 were not
optimized, but the same parameters as for the TI wavelet feature-based method were used.
Hence the two methods are compared with respect to their ability to handle the data produced
by a fixed background elimination and denoising strategy.

Accuracy was measured for task 2a, i.e. for the distinction of up ∪ down signals from
background because, as discussed in Section 5.4, this is the two-class classification task solved
by fuzzy template matching. Like with the wavelet method, classes are balanced, i.e. one half

124 Chapter 5. Pattern Detector for PAMONO

Table 5.4: Performance of Fuzzy Template Matching. The ‘Union’-row shows performance measures
as attained on the composite dataset that was also used in evaluating the wavelet-based approach.
The other rows subdivide these results into the three datasets from which the union dataset was
composed. Dataset names refer to Table 7.1. The columns to the right of the ‘Accuracy’-column
display ratios of correctly classified examples in the respective class. The two rightmost columns
refer to the correct classification of up, respectively down signals into the up ∪ down class. The
primary source of misclassifications is the confusion of down signals as belonging to the background
class, cf. rightmost column. This particularly affects datasets with low Signal-to-Noise Ratio
(SNR), either due to a low quality sensor surface (200 nm LQ) or low amplitudes because of small
nano-object size (100 nm HQ).

Dataset Accuracy Background Up ∪ Down Up Down
Union 0.82980 0.93124 0.72835 0.95506 0.50164
200 nm HQ 0.92933 0.94818 0.91033 0.96745 0.85321
200 nm LQ 0.79691 0.95669 0.63591 0.93648 0.33533
100 nm HQ 0.76439 0.88916 0.64144 0.96106 0.32182

of the data belongs to the up ∪ down class and the other one to the background class, making
Accuracy a suitable indicator of classification quality over all classes, cf. Appendix A. As a
reminder, the dataset is composed of time series synthesized from three sensor measurements
with different quality, respectively nano-object size (datasets “200 nm HQ”, “200 nm LQ” and
“100 nm HQ” in Table 7.1).

Accuracy as attained by fuzzy template matching for the union of the three datasets is
0.82980 (cf. first line of the ‘Accuracy’-column in Table 5.4). The wavelet method achieved
Accuracy values between 0.95156 and 0.95477 in this scenario (cf. ‘Task 2a’-column in
Table 5.1). Fuzzy template matching has lower Accuracy due to bad performance on the
200 nm LQ and 100 nm HQ datasets, i.e. on datasets with low SNR (cf. last two lines of the
‘Accuracy’-column). In 200 nm LQ the SNR is low due to a low quality sensor surface, while in
100 nm HQ it is low due to the linear relationship between particle size and signal amplitude,
cf. Section 2.2 and [ZKG+10]. The primary source of misclassifications is not the background
class: A ratio of 0.93124 of all background time series is classified correctly, and only on the
100 nm HQ dataset it performs worse, with a ratio of 0.88916 (cf. ‘Background’-column in
Table 5.4). Instead, most errors occur in the up ∪ down class, especially on the low SNR
datasets. As ground truth for the up ∪ down class is available that differentiates up from down
signals, the last two columns in Table 5.4 investigate the primary source of errors further: A
ratio of 0.95506 of up signals in the overall dataset is classified correctly as belonging to the
up ∪ down class. The lowest ratio in an individual dataset is 0.93648, obtained for 200 nm
LQ. That means the primary source of the errors incurred by fuzzy template matching on the
given composite dataset lies in the down class: Over all datasets, only a ratio of 0.50164 of
down signals is classified correctly into the up ∪ down class. In the given balanced two-class
scenario, this is close to randomly guessing the class of down signals. However, this issue
affects only the down signal subset of the up ∪ down class. Practical conclusions from this
are drawn in Section 5.5.6. While with a ratio of 0.85321 of correctly classified down signals,
performance on the 200 nm HQ dataset is above random guessing, the ratios are 0.33533 and
0.32182 for the 200 nm LQ and 100 nm HQ datasets, respectively. As a summary, most of
the errors incurred in fuzzy template matching arise from down signals that are not assigned
to the up ∪ down signal class, but are confused with the background class. This is consistent

5.5. Time Series Classification via TI Wavelet Features 125

with the observations made in the wavelet-based approach, where the down signals were most
evasive to correct classification as well.

Computation time required by the GPU-implementation of fuzzy template matching
[LST+13a; LST+13b] are considerably lower than for the wavelet-based approach running on
the Central Processing Unit (CPU): Evaluating the 5000 randomly drawn parameter sets
took 42 265 s (≈12 h), resulting in an average of 8.45 s for one analysis with parameters known
(Nvidia® GeForce® GTX 980, cf. System Specification 7.1 in Section 7.3.6). In particular,
fuzzy template matching is real-time capable: Being able to process the dataset consisting
of T = 512 images within 8.45 s means that 60 images can be processed per second, while
the recording rate of the sensor is 20 images per second. Computation times arising in
the wavelet-based method are summarized here for convenience and contrasted with these
values: A parameter optimization like in fuzzy template matching is not necessary for the
wavelet-based method, as long as parameter values are chosen large enough. However, a
training phase is required, which for the given dataset takes 77 s (coreset size N̂ = 7500,
Km = 1500 centers per class to be computed) plus the time taken for feature computation,
which is 3258 s per 100000 time series of length T = 512 and thus the bottleneck of the overall
method. Applying the classifier to 100000 time series takes 17 s (Km = 1500 centers per class),
respectively 2 s (Km = 150 centers per class), which by itself is real-time capable. However,
the 3258 s for feature computation that also arise during application to 100000 input time
series spoil this property.

A summary of comparing time series classification via fuzzy template matching to the
TI wavelet-based method is given in Table 5.5, listing the strengths and weaknesses of both
methods. An interpretation of these results is given in the conclusions in the subsequent
section. More results, covering not only time series classification but all modules constituting
the detector from Figure 5.1, as well as their interactions, are provided in Chapter 7.

5.5.6 Conclusion

A novel set of translation-invariant wavelet-based features for time series classification was
presented and used in a condensed k-NN classifier that was built from a fast coreset-based
clustering of a big training dataset. The efficacy of the approach in PAMONO time series
classification was demonstrated: For the most important classification task of distinguishing
up signals in the central parts of nano-object adhesions from noisy background, Accuracy
close to 1 was achieved.

It was demonstrated that the method is robust to increasing noise in the input signal
and insensitive to its main parameters (number of regarded features and number of nearest
neighbors in k-NN), as long they are chosen large enough. Optimization of these parameters is
not necessary. Feature selection was shown to be stable, and clustering time was considerably
reduced by using the coreset-based BICO approach. Furthermore, the capability of generalizing
across datasets was empirically demonstrated by training on two 200 nm datasets and applying
the resulting classifier to a 100 nm dataset. Only a minor decrease in Accuracy was observed,
as compared to learning from all three datasets.

Choice of Method

As the major drawback of the TI wavelet feature-based approach, the high computation
times arising in wavelet transformation and feature extraction were identified, ruling out a

126 Chapter 5. Pattern Detector for PAMONO

Table 5.5: Strengths and Weaknesses of the Presented Methods for Time Series Classification.

Fuzzy Template Matching TI Wavelet Features
Requirements Template time series to match

against
Labeled Training Data

Optimization Parameters have large impact on
results quality and need to be op-
timized for each dataset

Few parameters, each with minor
impact on results quality; no opti-
mization necessary as long as pa-
rameter values are chosen large
enough

Training Speed No training required Fast coreset-based training but
preceded by feature computation
which is the main bottleneck

Application
Speed

Real-time-capable on GPU Real-time-capable classifier ap-
plication but preceded by fea-
ture computation that requires a
speedup of at least 140 to attain
real-time performance

Quality Accuracy 0.82980 on examined
dataset

Accuracy 0.95407 on the same
dataset

real-time application of the otherwise real-time-capable classifier. In face of the portable
sensor scenario with on-site real-time analyses, this is an important disadvantage that can be
addressed by a GPU implementation of the method, which is not the subject of this thesis.

Fuzzy template matching-based time series classification achieves real-time-capable perfor-
mance on the GPU and attains ratios of correct predictions between 0.88916 and 0.96745 for
the up signal and background class over all datasets, cf. Table 5.4. Like for the wavelet-based
approach, but to a larger extent, the main weakness of fuzzy template matching lies in
misclassification of the down signal class. In real data, down signals arise in the periphery of
nano-object adhesions and constitute the least prevalent class, followed by up signals arising
in and around the center of nano-object adhesions, and dominated by the considerably larger
number of background time series: The synthetic data used in the preceding evaluations was
balanced not for the sake of realism but in order to give equal importance to all classes and
avoid the Accuracy paradox [Bru07] in developing the classifier. However, for real sensor data,
bad performance in classifying down signals firstly affects only few time series and secondly
can be remedied by exploiting the spatial structure of nano-object adhesions: The center part
of Figure 5.6 illustrates that down signals occur in between up signals and that the union of
up and down signals covers the area affected by a nano-object adhesion. Down signals that
are misclassified as up signals hence cause no problem as they contribute to that area being
detected. Down signals that are misclassified as background cause burrs or holes in that area
but these can easily be fixed using morphological operators, as discussed in Section 5.6.1.

As a conclusion, in the remainder of this thesis fuzzy template matching is used as the
method for time series classification. It is selected firstly for its real-time capability and
secondly because the misclassifications it incurs can easily be remedied and affect the class
that is least important in practice.

5.6. Segmentation 127

Future Work

For TI wavelet feature-based time series classification, one crucial perspective is a GPU
implementation of the underlying TI wavelet transform as well as the subsequent feature
extraction. Such a GPU port can enable real-time-capable application of the method, and
thus exploitation of its superior Accuracy within the real-time scenario. Until then it can
be used for offline analysis and aid e.g. in cases of datasets with very low SNR, like 50 nm
nano-objects. Corresponding PAMONO measurements are yet to be conducted. Additionally,
the cross-dataset generalization performance of the classifier can be investigated further, using
datasets with larger difference in nano-object size and/or sensor surface quality.

In a first phase, these experiments can be carried out using data obtained by synthesis,
as described in Chapter 4. In a second phase, the synthetic test data used for assessing
classification quality can be replaced with labeled time series obtained from real PAMONO
sensor measurements. This involves manually labeling a large amount of time series, which
can be conducted e.g. via crowdsourcing platforms like Amazon’s Mechanical Turk [BKG11;
DK13]. In order to reduce costs, training data can still be generated via synthesis, thus
evaluating how a classifier trained from synthetic data performs on real data. An evaluation
using real data furthermore means that performance measures are computed with respect to
the real unbalanced class distributions. To capture class-specific performances in this case,
quality measures like per-class Precision and Recall [SL09] can be regarded, instead of using
Accuracy as a single omnibus index. In addition to that, classifiers other than k-NN can be
examined.

A further experiment being a good follow-up to a GPU implementation is running the entire
SynOpSis approach from Figure 3.2 using the wavelet-method for time series classification in
the pattern detector from Figure 5.1. This evaluates the impact of the higher quality class
mask it provides, on overall detection and classification quality. Such an experiment assesses
the method’s net benefit for overall analysis results. It evades the need for manually labeling
data on the time series level, in favor of requiring a segmentation on the level of polygons
delineating nano-objects, as output by the overall analysis.

5.6 Segmentation

Time series classification, as carried out by either one of the methods presented in the two
preceding sections, yields a spatiotemporal class mask Γ(x, y, t) as its output. Subsuming
the up and down signal classes under the up ∪ down class makes this class mask binary, and
spatiotemporal regions classified as up ∪ down approximately correspond to times when and
areas on the sensor surface that are affected by nano-object adhesions. Figure 5.12a shows
an amplified T ⋅A estimate for such an area, with the nano-object manifesting as upward and
downward deviations in measured intensities. Figure 5.12b overlays the corresponding class
mask Γ, as computed by time series classification. It is composed of the pixels affected by up
or down signals and approximately covers the area affected by the nano-object.

The segmentation module in Figure 5.1, which is to be detailed in this section, receives
such a binary spatiotemporal class mask Γ(x, y, t) as input, streams it through the GPU and
aggregates spatiotemporally adjacent coordinates (x, y, t) with Γ(x, y, t) = 1 to contiguous
candidate objects, represented as 2-D polygons. This process is real-time-capable and is
divided into three steps:

128 Chapter 5. Pattern Detector for PAMONO

(a) γ (b) κSE (c) Erosion (d) Dilation (e) Opening (f) Closing

(g) κSE (h) Erosion (i) Dilation (j) Opening (k) Closing

Figure 5.11: Morphology – Examples. Four morphological operators were applied to the binary input
class mask γ shown in (a), using the structuring elements κSE in (b) and (g), respectively. The
origins of the structuring elements are indicated by black dots. Each row of images shows
the results of applying either erosion, dilation, opening or closing to (a), using the respective
structuring element. Closing γ with the circular structuring element of radius 2 displayed in
(g) remedies burrs and holes in the class mask, cf. (k).

1. A preprocessing on the pixel-level is applied to the class mask Γ to remove its possible
burrs and holes, cf. Section 5.6.1.

2. The resulting enhanced pixel mask Γ̂ is converted to 2-D polygons by applying the
marching squares algorithm [BL03] to each image Γ̂(○, ○, t), cf. Section 5.6.2.

3. A postprocessing on the polygon-level clusters polygons in close spatiotemporal proximity
and represents each such cluster by a single polygon with largest area. This aims at
removing repeated detections of the same nano-object as well as spurious/shattered
responses, cf. Section 5.6.3.

5.6.1 Preprocessing on the Pixel-Level

Preprocessing on the pixel-level is carried via standard morphological operators [GW07] which
are briefly summarized here, explaining their purpose for PAMONO and their parameters
to be optimized. As these operators are applied separately for each temporal coordinate t,
the function γ(x, y) is used as an abbreviation to denote one 2-D spatial image from the
class mask Γ at a certain point in time t, i.e. γ(○, ○) = Γ(○, ○, t) for the current t under
consideration.

Morphological operators on binary input images are defined based on a so-called structuring
element κSE(x, y) ∈ {0,1}, determining the kernel of the morphological operation. Structuring
elements, in turn, are defined by their coordinates x, y of support and their origin. Figures
5.11b and (g) show two structuring elements κSE. In (b), κSE is a circle with radius one
and its origin in the center (indicated by a black dot), while in (g) the radius of the circle is
two. Morphological operations are implemented by using the respective structuring element
as a nonlinear window operator: The origin of κSE is translated to every coordinate x, y in
the domain of γ (zero-padding γ to handle boundary conditions), and the value in γ below
the origin of κSE is replaced with the operator result. Four of the most basic among such
operators, namely erosion, dilation, opening and closing, are explained in the following.

5.6. Segmentation 129

In an erosion, the value in γ at the origin of κSE is set to one, if all values in γ that are
covered by the one-values in κSE equal one. Erosion thus shrinks the class mask by removing
details in γ that are smaller than κSE, e.g. burrs at the fringes of nano-objects. Figure 5.11a
displays an example class mask γ around a nano-object adhesion, while (c) and (h) show the
results of applying erosion with the structuring elements in (b) and (g) respectively.

In a dilation, the value in γ at the origin of κSE is set to one, if any of the values in γ
that are covered by the one-values in κSE equals one. Dilation thus grows the class mask
by bridging gaps and holes in γ that are smaller than the structuring element. It therefore
eliminates burrs at the fringes of nano-objects by growing the class mask to incorporate the
burrs. Figures 5.11d and (i) show the results of dilating (a) with the structuring elements in
(b) and (g), respectively.

The preprocessing applied to the class mask in the PAMONO pattern detector aims at
removing burrs and closing gaps without overly shrinking or growing the mask because that
would result in either missing parts of the nano-object areas or including too much of the
background area. This goal can be achieved by combining erosion and dilation, giving two
further morphological operators, called opening and closing.

Opening γ with a structuring element κSE means that first, γ is eroded with κSE and
then the result is dilated with κSE. Figures 5.11e and (j) show the result of opening (a) with
the structuring elements in (b) and (g), respectively.

Closing γ with a structuring element κSE means that first, γ is dilated with κSE and
then the result is eroded with κSE. Figures 5.11f and (k) show the result of closing (a) with
the structuring elements in (b) and (g), respectively.

Application in Segmentation and Arising Parameters

In the segmentation module of the PAMONO pattern detector from Figure 5.1, morphological
closing and opening can be applied to the class mask Γ provided by time series classification.
Closing is enabled by the parameter bclosing ∈ {0,1}, which is subject to optimization, along
with the radius Kclosing

radius ∈ N>0 of the circular structuring element used in closing. The
same holds for bopening ∈ {0,1} enabling opening and the opening radius Kopening

radius ∈ N>0. If
both, opening and closing are enabled, closing is applied before opening because applying
opening first would remove too much of the original class mask, especially for larger structuring
elements, cf. Figures 5.11e and (j). Concatenating the results of these 2-D spatial morphological
operations along the temporal dimension yields the enhanced spatiotemporal class mask Γ̂
that is the input of the polygon aggregation algorithm described in the next section.

5.6.2 Aggregating Pixels to Polygons

After preprocessing, the enhanced class mask Γ̂ ∈ {0,1} is converted into a per-image polygonal
representation, where each polygon delineates a spatially contiguous set of pixels with value
one in Γ̂. Thus each obtained polygon marks an area that is a candidate for being affected by
a nano-object adhesion, cf. Figure 5.12. For turning Γ̂ into polygons, the marching squares
algorithm9 [BL03] is applied separately to each 2-D spatial class mask Γ̂(○, ○, t) for any given t.

9Marching squares is used because then every 2-D polygon has a single temporal coordinate. There is a 3-D
generalization of marching squares, called marching cubes [BL03], that can process 3-D class masks directly.
Marching cubes yields 3-D polygonal volumes, thus the polygonal representation of a single adhesion event
would span multiple points in time, aggravating its temporal localization. In contrast, marching squares, in

130 Chapter 5. Pattern Detector for PAMONO

(a) (T ⋅A)(○, ○, t) Estimate (b) Γ̂(○, ○, t) as an Overlay (c) Marching Squares Result

Figure 5.12: Marching Squares – Example. (a) shows the (T ⋅A)(○, ○, t) estimate from which the class
mask Γ̂(○, ○, t) in (b) was computed. The shown spatial detail contains one nano-object adhesion,
manifesting as upward and downward deviations from the mean intensity value in (a). The
corresponding coordinates are marked by ones in Γ̂(○, ○, t), indicated by the green pixels in (b).
The black polygon in (c) is the result of applying the marching squares algorithm [BL03] to
Γ̂(○, ○, t).

The obtained polygons are placed in a spatiotemporal coordinate system at the temporal
coordinate t for which they were created. The result is a set of polygons which are again
located in the spatiotemporal domain (x, y, t) of the input data, constituting its segmentation.
These polygons are then clustered in a postprocessing, to minimize repeated detections of the
same nano-object candidate, cf. Section 5.6.3.

Marching Squares Algorithm

In its most basic variant, the marching squares algorithm [BL03] can be regarded as a window
operator applied to a 2-D binary class mask: A 2 × 2 window is shifted over all coordinate
pairs x, y in the class mask, and the four binary values within the window are regarded. This
results in 24 = 16 possible configurations of values within the window. Figure 5.13 shows a
lookup table of tiles, associating configurations of class mask values with polygons. Class
mask values are indicated by dark and light circles, with dark circles representing value one.
Polygons are indicated by green areas. Note that there are 16 possible configurations in the
class mask but 18 tiles. The two extra tiles arise due to the two ambiguities in row four of
the figure: In this row, the polygons can be placed in two different ways. These ambiguities
can be resolved by deciding to use either the polygons to the left or to the right of the slash
in the figure.

Applying the thus-defined window operator to a class mask yields a set of partial polygons
that yet need to be combined to larger polygons. This is done by selecting any tile in the
result with at least one and at most three one values in the underlying class mask. Hence

combination with the heuristic described in Section 5.6.3, ideally yields one polygon per nano-object adhesion,
and this polygon is located on the image showing the strongest evidence for that adhesion, which is desirable
for computing image-based local features, cf. Section 6.2.

5.6. Segmentation 131

/

Figure 5.13: Marching Squares – Tiles. A lookup table of tiles associating configurations of class mask
values with polygons is shown. Dark and light circles indicate ones and zeros in the class mask,
and polygons are displayed as green areas. While there are 16 possible configurations of values
in the employed 2× 2 window into the class mask, 18 tiles are shown. Two extra tiles are due to
the ambiguities of polygon placement in the fourth row of the figure. These ambiguities can be
resolved by deciding to use either the polygons to the left or to the right of the slash. Figure
adapted from [BL03].

a tile is selected that resides on an edge or a corner in the class mask. Starting from that
tile, the adjacent tiles are examined and traced in the direction of the polygon boundary
until the starting tile is found again. All polygon points visited during this examination are
assembled into a matrix, defining one output polygon, which can be simplified by removing
points between subsequent collinear edges. All tiles visited during this process are marked
as visited, and the process is iterated until no more unvisited edge or corner tiles exist.
Finally, non-compact polygons, as arise e.g. within closed holes of zeros in the class mask,
are discarded.

5.6.3 Postprocessing on the Polygon-Level

Applying marching squares for each temporal coordinate t yields a set of polygons in the
same spatiotemporal coordinate system as the images recorded by the sensor. In a sliding
window approach to time series classification like the fuzzy template matching proposed in
Section 5.4, a single nano-object adhesion to the sensor surface may result in high matching
scores for several consecutive images, causing positive responses in the class mask Γ̂ not
only for one temporal coordinate but within a temporal window. The result is that multiple
polygons are created within that temporal window which all relate to the same adhesion.
A similar phenomenon exists in the spatial domain: The low SNR in the input data may
lead to multiple, fragmented polygons being created within a spatial window around a single
nano-object adhesion. As a consequence of both phenomena, the polygons output by marching
squares need postprocessing, aimed at establishing a one-to-one correspondence between
polygons and nano-object adhesions and at choosing those polygons with highest merit for
the pattern classifier to be presented in Chapter 6. Such polygons cover the area affected

132 Chapter 5. Pattern Detector for PAMONO

by the nano-object adhesion to the fullest extent and reside on the T ⋅A image showing the
strongest evidence for that adhesion.

In order to find these polygons, the following heuristic is applied: A spatiotemporal
clustering of polygons is conducted, using a cylindrical kernel and considering polygon areas.
The process works as follows:

1. The polygons are sorted by descending polygon area.
2. For the currently largest polygon, the following is done: A circle with radiusKmerge

X,Y ∈ R≥0
around the polygon centroid is searched for centroids of other polygons. This is
conducted for the temporal coordinate t the polygon resides on, as well as for the
Kmerge
T ∈ N≥0 preceding and following temporal coordinates, thus making the search

region a spatiotemporal cylinder. Choosing this shape for the search kernel respects
the cylindrical spatiotemporal structure of nano-object adhesions. Any polygon with
its centroid within the cylinder is removed. These polygons are smaller, and thus it is
expected that they do not cover the adhesion better than the larger polygon and that
they do not reside on an image that shows stronger evidence for the adhesion in terms
of image intensity.

3. The second step is repeated with the next smaller remaining polygon, until all remaining
polygons have been examined.

As a result, polygons in close spatiotemporal proximity are clustered to a single polygon,
chosen as the one with largest area in that cluster. This heuristic aims at eliminating repeated
detections of the same nano-object adhesion. In an ideal result, each polygon delineates
exactly one candidate object.

The purpose of the polygons output by the overall segmentation module is twofold:
Firstly, each polygon indicates (in an ideal case exactly) one nano-object adhesion candidate.
Secondly, the polygons delineate the areas over which the features for the pattern classifier are
extracted, cf. Section 6.2. These features serve in deciding whether or not such a candidate
was caused by an actual nano-object adhesion.

5.6.4 Parameters

The parameters that are optimized for the segmentation module, along with the examined
ranges of values are:

Preprocessing on the Pixel-Level

bopening ∈ {0,1}
a boolean enabling or disabling morphological opening,

Kopening
radius ∈ {1, . . . ,5}

an integer determining the radius of the circular structuring element used in morpho-
logical opening,

bclosing ∈ {0,1}
a boolean enabling or disabling morphological closing,

Kclosing
radius ∈ {1, . . . ,5}

an integer determining the radius of the circular structuring element used in morpho-
logical closing,

5.7. Parameters of the Detector 133

B
oo
le
an

In
te
ge
r

Fl
oa
t

0

2

4

6

8

10

Figure 5.14: Numbers of Detector Parameters by Parameter Type. The pattern detector has ten
boolean, ten integer and eight floating point parameters, summing to 28 parameters in total.
These parameters are subject to optimization within the Optimization stage of SynOpSis, cf.
top right part of Figure 3.2.

Postprocessing on the Polygon-Level

Kmerge
X,Y ∈ [2,12]

a float determining the spatial radius of the cylinder used in spatiotemporal polygon
clustering,

Kmerge
T ∈ {5, . . . ,100}

an integer determining the temporal extension of the cylinder used in spatiotemporal
polygon clustering.

5.7 Parameters of the Detector

Sections 5.2 to 5.6 each presented methods for realizing one of the modules used in the pattern
detector developed for PAMONO data analysis, cf. Figure 5.1. The union of these methods10

gives a full realization of this pattern detector, exhibiting a number of parameters, the roles
and purposes of which were discussed in the respective sections.

Figure 5.14 displays the numbers of these parameters by type: There are ten boolean
parameters enabling or disabling certain algorithms in the detector, respectively choosing
between alternative methods. Furthermore, ten integers control window and kernel sizes and
the length of the matched ideal template. Finally, eight floating point parameters control
hard and soft thresholds, as well as non-integer kernel properties in filtering and polygon
merging, summing to 28 parameters in total.

These 28 parameters of the pattern detector are subject to optimization within the
Optimization stage of SynOpSis, cf. top right part of Figure 3.2. Table 5.6 lists each parameter
along with its type, the range of values that was selected to be examined during optimization,
the module name and corresponding section where the parameter is defined, and a brief

10Fuzzy template matching was chosen over the wavelet-based approach to time series classification, as
argued for in Section 5.5.5.

134 Chapter 5. Pattern Detector for PAMONO
T
able

5.6:
P
aram

eters
O
ptim

ized
for

the
P
attern

D
etector.

N
am

e
Type

R
ange

Pattern
D
etector

M
odule

Section
BriefD

escription
b bg

b ool
{0,1}

Bac kground
Elim

ination
5.2

T em
poralaveraging

or
m
edian

w
ρ

int
{1,...,40}

Background
Elim

ination
5.2

Past
w
indow

length
w
φ

in t
{1, ...,40}

Bac kground
Elim

ination
5.2

Presen t
w
indow

length
b denoise

avg
b ool

{0,1}
D
enoising

5.3.1
Spatial averaging

filter
on/off

K
wavg

int
{1,...,7}

D
enoising

5.3.1
Averaging

filter
kernelw

idth
K

havg
in t

{1, ...,7}
D
enoising

5.3.1
A veraging

filter
kernelheight

b denoise
G

auß
bool

{0,1}
D
enoising

5.3.1
SpatialG

auß
filter

on/off
σ

G
auß

float
[1.5,3.5]

D
enoising

5.3.1
G
auß

filter
standard

deviation
b denoise

m
ed

b ool
{0,1}

D
enoising

5.3.1
Spatial m

edian
filter

on/off
K

wm
ed

int
{1,...,7}

D
enoising

5.3.1
M
edian

filter
kernelw

idth
K

hm
ed

in t
{1, ...,7}

D
enoising

5.3.1
M
edian

filter
kernelheight

b denoise
fuzzy

b ool
{0,1}

D
enoising

5.3.2
F uzzy

denoising
on/off

l1
float

[0.02,0.1]
D
enoising

5.3.2
Lower

soft
threshold

(denoising)
l2

float
[0.1,0.2]

D
enoising

5.3.2
U
pp er

soft
threshold

(denoising)
b denoise

bright
bool

{0,1}
D
enoising

5.3.3
Brightness

correction
on/off

b denoise
spill

bool
{0,1}

D
enoising

5.3.3
O
verspillcom

pensation
on/off

T
int

{8,...,32}
T
im

e
Series

C
lassification

5.4.1
Length

ofm
atched

tem
plate

h
1

float
[0.0005,0.1]

T
im

e
Series

C
lassification

5.4.1
Lower

hard
threshold

(m
agnitude)

h
2

float
[0.01,0.2]

T
im

e
Series

C
lassification

5.4.1
U
pp er

hard
threshold

(m
agnitude)

b classify
fuzzy

b ool
{0,1}

T
im

e
Series

C
lassification

5.4.3
F uzzy

or
hard

thresholding
classification

s1
float

[0.002,0.8]
T
im

e
Series

C
lassification

5.4.3
Lo wer

soft
threshold

(m
atching

score)
s2

float
[0.05,1]

T
im

e
Series

C
lassification

5.4.3
U
pper

soft/hard
threshold

(m
atching

score)
b opening

b ool
{0,1}

Segm
en tation

5.6.1
M
orphological opening

on/off
K

opening
radius

int
{1,...,5}

Segm
entation

5.6.1
O
pening

circle
radius

b closing
bool

{0,1}
Segm

entation
5.6.1

M
orphologicalclosing

on/off
K

closing
radius

in t
{1, ...,5}

Segm
en tation

5.6.1
C
losing

circle
radius

K
m

erge
X
,Y

float
[2,12]

Segm
entation

5.6.3
Spatialm

erging
distance

K
m

erge
T

in t
{5, ...,100}

Segm
en tation

5.6.3
T em

poralm
erging

distance

5.8. Matching and Labeling 135

description of its purpose. Note that for the integer and float parameters, the examined
ranges are smaller than the ranges that are feasible in principle: They were chosen to be
as small as possible while still providing good objective function values in practice, over a
range of different PAMONO experiments. Note that by optimizing objective functions that
quantify measures of detection quality, the parameters of the image processing algorithms in
the detector are optimized to give the best detection-specific image enhancement. They do
not aim at image restoration.

5.8 Matching and Labeling

Automatic optimization of algorithmic parameters with respect to the objective functions
employed in SynOpSis requires that the confusion matrices and other quantities from which
these objectives are derived can be automatically evaluated. In the SynOpSis approach
depicted in Figure 3.2, this takes place in the “Evaluate Objectives” module which is part of
the Optimization stage. This section describes how this module is realized for PAMONO data
analysis. For the pattern detector, the objectives to be optimized are defined in Section 3.5.2
and rely on the confusion matrix shown in Table 3.1 and illustrated in Figure 3.4. Automatic
computation of this confusion matrix is carried out by matching the ground truth known
from the Synthesis stage (cf. Chapter 4) to the results output by the pattern detector. For the
pattern classifier to be presented in Chapter 6, these objectives are defined in Section 3.6.2
and rely on the confusion matrix shown in Table 3.2 and illustrated in Figure 3.6. Automatic
computation of this confusion matrix is enabled by labeling the matching results, i.e. by
assigning ground truth class labels to the output of the pattern detector. Given these ground
truth-labeled detector results, the confusion matrix of the classifier can be computed by
comparing ground truth labels to those predicted by the classifier. In addition to that, ground
truth-labeled detector results serve as training data in supervised learning of that classifier.
Performance estimation techniques as presented in Section 3.9 are applied to avoid evaluating
objectives on the same data that was used to train the classifier.

Matching

Matching the synthetic PAMONO ground truth, created as according to Figure 4.2, to
the output of the PAMONO pattern detector from Figure 5.1 is carried as follows: Both,
ground truth and detector results are represented as polygons, with ground truth polygons
generously delineating the area affected by a nano-object adhesion and detector polygon
properties depending on the algorithmic parameters of the detector. The matching criterion
is point-to-area incidence within a temporal window: Each ground truth polygon area is
checked for incident detector polygon centroids within a temporal window of size ±T . Here
T is the length of the considered ideal template pattern as defined in Section 5.4.2. It is a
parameter of the pattern detector and is subject to optimization, so the temporal size of the
matching window automatically adapts to changing processing parameters.

Among the detector polygon centroids that are incident to a ground truth polygon, the
detector polygon with largest area becomes the primary match, while the others are listed
as repeated detections of the same nano-object. The overall number of repeated detections
is required for computing T̂P, which is the number of true positive detector responses,
excluding repeated detections. T̂P is used in the definition of the objective M-Rate, cf.

136 Chapter 5. Pattern Detector for PAMONO

x

y

t

Figure 5.15: Matching – Illustration. A result of matching is shown in a perspective view on the
underlying spatiotemporal coordinate system. The x, y dimensions are located at the bottom,
while t extends upward. Ground truth polygons are colored red, and detector polygons are blue.
A pale color indicates unmatched polygons, while matched polygons are drawn more saturated.
There are two False Negatives (FNs), visible as pale red ground truth polygons in the lower
part, and a larger number of False Positives (FPs), visible as pale blue detector polygons all
over the spatiotemporal volume. Black lines indicate primary matches, thus connecting pairs
of True Positives (TPs), while green lines connect ground truth polygons to their repeated
detections.

5.8. Matching and Labeling 137

Equation (3.2), as well as in defining a Recall objective that is cleansed from repeated
detections, cf. Equation (3.3). As a consequence, repeated detections do not contribute to
the objective Recall but are penalized by the objective M-Rate. This is explained in more
detail in Section 3.5.2.

The opposite case of a detector polygon centroid that is incident to multiple ground truth
polygons is not treated specifically because this condition is rare, and in combination with
the previous case, a maximum matching problem on a bipartite graph arises: Ground truth
polygons and detected polygons form two disjoint sets of vertices, and the centroid-to-area
incidence defines a set of edges connecting only between the two sets of vertices, not within.
This fulfills the definition of a bipartite graph. The task is to find a maximum subset of these
edges, matching ground truth with detected polygons, where maximality ensures that in the
case a detector polygon matches multiple ground truth polygons, and at least one of those
ground truth polygons also matches with another detected polygon, an optimal assignment
of detected polygons to ground truth polygons is found and vice versa. In order to solve a
maximum matching problem on a bipartite graph efficiently, the algorithm by Hopcroft and
Karp [HK73] can be used. As this special case was rarely observed in practice, this is not
done.

With these two special cases of multiple matches in both directions discussed, there are
three cases remaining, defining the three non-zero entries of the confusion matrix of the
detector in Table 3.1:

• A detector polygon with a matching ground truth polygon is counted as a True Positive
(TP) detector response.

• A detector polygon without a matching ground truth polygon is counted as a False
Positive (FP) detector response.

• A ground truth polygon without a matching detector polygon is counted as a False
Negative (FN) detector response (so actually, it is a non-response). FNs can not be
corrected for by the pattern classifier because they evaded the detector and are hence
not represented in its output. They are counted to evaluate the quality of the detection
result, e.g. in terms of detector Recall.

The notion of a True Negative (TN) is not defined in this context of detection because it
corresponds to an entity that has neither been detected, nor marked in the ground truth, and
hence can not be counted [WHS+12; SLN+09]. In order to accelerate the matching procedure
during optimization, an early cancellation criterion is used: If the number of detected polygons
is larger than a times the number of ground truth polygons, the matching process cancels and
the objectives are set to the worst possible values to indicate this condition and to mark the
individual as unattractive for the optimization process. This avoids over-sensitive parameters
covering the images in polygons and saves time during optimization because the matching
need not be computed for the largest inputs. A value of a = 5 was chosen empirically. Outside
of optimization the matching is always computed.

Figure 5.15 illustrates the results of matching with an example: A spatiotemporal
coordinate system is displayed in a 3-D perspective view. The temporal dimension extends
upward, and the two spatial dimensions are at the bottom. Ground truth polygons are drawn
in red, while detector polygons are colored blue. Unmatched polygons are indicated by a pale
color, while the color of matched polygons is more saturated. As an example, in the lower
temporal coordinates, there are two FNs, visible as pale red ground truth polygons, and all

138 Chapter 5. Pattern Detector for PAMONO

over the spatiotemporal volume there are pale blue detector polygons constituting FPs. All
polygons connected by black lines form pairs of TPs, as black lines indicate primary matches.
Green lines connect ground truth polygons to their repeated detections.

Labeling

Each polygon output by the detector can belong to one of two classes, as stated in Terminol-
ogy 3.1 and restated here for the concrete context of PAMONO:

• Target pattern polygons are caused by actual nano-object adhesions, i.e. the detector
response is due to the T component of the T ⋅A signal estimate. This class is equivalent
to the TP detector responses discussed in the context of matching.

• Non-target pattern polygons are caused by something other than an actual nano-
object adhesion. The set of other causes was subsumed under the term ‘artifact’ and
modeled by the artifacts component A in the T ⋅A signal estimate. Thus, these polygons
are responses of the detector to signals in the A component, which was not separated
from T ⋅A on the pixel level. Instead, these polygons are sorted out by the classifier in
Chapter 6. The class of polygons due to A (or due to residual noise) is equivalent to
the FP detector responses discussed in the context of matching.

This defines the two-class classification problem tackled via supervised learning in Chap-
ter 6: TP detector polygons are labeled as target patterns, constituting the positive class. FP
detector polygons are labeled as non-target patterns, constituting the negative class. Labeled
detector polygons are used later in evaluating the objective functions of the classifier in the
Optimization stage, and in evaluating overall analysis quality. Furthermore they serve as
training data for the supervised classifier.

Transferring labels via matching from ground truth polygons to detected polygons is
necessary because the ground truth segmentation practice11 differs from the detector output.
The matching procedure translates between ground truth segmentation practice and the
detector-generated segmentation. In a fully automatic analysis of unsegmented data, only the
latter is available, which is why the classifier must be learned from labeled detector polygons,
not ground truth polygons.

5.9 Conclusion

A pattern detector, custom-tailored for the PAMONO sensor scenario, was presented, cf.
Figure 5.1. Its in- and outputs interface the SynOpSis approach presented in Chapter 3, cf.
Figures 3.2 and 3.3. The detector consists of four consecutive modules that were presented in
Sections 5.2 to 5.6. Section 5.5 proposed an alternative method for realizing the time series
classification module, using a condensed k-NN classifier on translation-invariant, wavelet-based
features. This approach was ruled out due to runtime considerations, unless accelerated by
computation on the GPU. Time series classification via fuzzy template matching was chosen

11Ground truth polygons are typically larger than the detected ones: Nano-objects are just delineated
generously in the ground truth. An exact reconstruction of the ground truth polygons is not the goal of the
detector because the task is counting adhesions and covering the most salient part of the nano-object signals,
in order to extract features for the classifier.

5.9. Conclusion 139

instead, for its real-time capability and because its lower results quality pertains primarily to
the type of signal that is the least common and the least important in practice.

The four modules constituting the pattern detector exhibit 28 degrees of freedom in
terms of parameter choice, as summarized in Section 5.7. In order to ensure the best-
possible analysis quality for each PAMONO dataset, these parameters can be automatically
optimized via SynOpSis. To this end, Section 5.8 presented an application-specific heuristic
for matching ground truth to detector results, enabling automatic evaluation of objective
functions measuring detection quality and thus the quality of parameter sets.

The output of the detector consists of candidate regions for nano-object adhesions, repre-
sented as polygons. Furthermore, the spatiotemporal volume of intensities after background
elimination and denoising is part of the output because intensity-based local features used for
classifying the polygons are extracted from it later, cf. Section 6.2. If ground truth polygons
are present, as e.g. in synthetic data, the detected polygons are annotated with ground truth
class labels, which can be used by the supervised learning procedure described in Chapter 6.

An extensive evaluation of the pattern detector and a validation of the overall SynOpSis
approach will be given in Chapter 7. One part of this focuses on parameter optimization,
including choices between the competing algorithms within the modules, cf. Section 7.6.
Furthermore, the conjunction of the pattern detector with the pattern classifier will be
evaluated on real PAMONO data, thus measuring the quality of the results obtained from
the overall SynOpSis approach, cf. Section 7.5.

Chapter 6

Pattern Classifier for PAMONO

Contents
6.1 Introduction . 142
6.2 Feature Extraction . 145

6.2.1 Features of Polygon Shape . 145
6.2.2 Features of Spatial Intensities . 148
6.2.3 Features of Spatiotemporal Intensities 150

6.3 Balancing Class Prevalence . 152
6.3.1 Synthetic Minority Over-Sampling Technique (SMOTE) 154
6.3.2 Adaptive Synthetic Sampling (ADASYN) 155
6.3.3 Balancing in SynOpSis . 156

6.4 Feature Scale Normalization . 157
6.4.1 Methods for Affine Feature Scale Normalization 157
6.4.2 Applying Feature Scale Normalization 158

6.5 Feature Selection . 159
6.5.1 Approaches to Feature Selection . 159
6.5.2 Feature Selection in SynOpSis . 161

6.6 Learning Algorithms . 162
6.6.1 k-Nearest Neighbors Algorithm (k-NN) 162
6.6.2 Support Vector Machine (SVM) . 163
6.6.3 Random Forest . 165
6.6.4 Naïve Bayes . 167

6.7 Results . 168
6.7.1 Learning Algorithms . 170
6.7.2 Balancing Class Prevalence . 175
6.7.3 Feature Selection . 178
6.7.4 Feature Extraction . 179

6.8 Remaining Parameters of the Classifier 181
6.9 Conclusion . 182

In the previous chapter, the detection part of the abstract task description in Figure 3.1
was covered. Stated in terms of PAMONO data analysis, the output of the pattern detector
are spatiotemporal locations that are candidates for being related to target patterns, i.e.
nano-objects in the input time series of images. The pattern classifier to be presented in this
chapter serves to separate these candidates into actual target patterns and non-target detector
responses. It is a concrete realization of the abstract pattern classifier displayed in Figure 3.5.

141

142 Chapter 6. Pattern Classifier for PAMONO

Parameters

Pattern Classifier

ClassifiedB
Patterns

PatternsBasB
Features

LearningB
Algorithm

ClassifyingB
Model

ApplyBModel

Learn Model (Training)

Classify Input

PatternB
Detector

FeatureB
Extraction

PatternsBasB
PolygonsBandB

ImagesBforB
FeatureB

Extraction

ApplyB
Normalization

Normalization

NormalizedB
Features

BalancedB
TrainingBPatterns

BalanceBClassB
Prevalence

NormalizeB
Features

TrainingBPatternsB
asBFeatures

NormalizedB
TrainingBFeatures

Input

Output

SelectB
Features

ApplyB
Selection

SelectedBTrainingB
Features

SelectedB
Features

Selection

Figure 6.1: Classifier Component for PAMONO. The abstract pattern classifier from Figure 3.5 is
realized for PAMONO as shown above. Its inputs are the output of the pattern detector from
Figure 5.1, along with algorithmic parameters for a learning algorithm used to train a classifying
model. Feature extraction transforms the images and polygons provided by the detector to the
feature vectors employed by the classifier. Labeled synthetic training data is used in a supervised
learning procedure depicted in the upper part of the pattern classifier. This procedure consists
of three optional preprocessing steps and a learning algorithm. As depicted in the lower part of
the pattern classifier, input patterns to be classified undergo the same preprocessing, before the
learned model is applied to assign a class label to each input pattern.

The features used for classification specifically aim at the PAMONO application scenario,
while the overall machine learning and classification process is more general. The concrete
pattern classifier described here has the same interface as the abstract one in Figure 3.5 and
can therefore implement the two instances of the pattern classifier in SynOpSis, cf. Figure 3.2.

Section 3.6 identified Precision and Recall as suitable objectives to be optimized for the
pattern classifier within the Optimization stage of SynOpSis. The optimization itself will
not be covered further within this chapter, as the focus lies on the internals of the pattern
classifier and on feature extraction. However, the algorithmic parameters that are to be
optimized with respect to these objectives will be introduced in detail.

After Section 6.1 gave an overview of the concrete pattern classifier, Section 6.2 presents
the set of features that are extracted for PAMONO data analysis. Sections 6.3 to 6.6 cover
the internal components of the pattern classifier, including supervised learning algorithms
to compute classifying models. Section 6.7 provides results comparing different variants of
realizing the pattern classifier, and based on this evaluation, three design decisions are taken.
The parameters remaining after these choices are summarized in Section 6.8, and finally,
Section 6.9 gives conclusions and an outlook on future work concerning the pattern classifier.

6.1 Introduction

The pattern classifier to be presented in this chapter is a heavily extended version of
the work in [SWL+11]. Major additions include new features for classification, balancing
of class prevalence and a Random Forest [Bre01] learning algorithm, which will all be
presented throughout this chapter. Furthermore, the resulting evolved version of [SWL+11]
was embedded into the SynOpSis approach, enabling a multi-objective optimization of its
algorithmic parameters.

Pattern classification in the context of PAMONO data analysis addresses the separation
of the T ⋅A term in Equation (4.1). Separating the target patterns in T from the non-target

6.1. Introduction 143

patterns in A by division on the pixel level is an ill-posed inverse problem because only an
estimate of the product signal T ⋅A is known for real data: Given only the their product,
the individual components can not be separated uniquely on the pixel level. The pattern
classifier hence addresses this separation by classification on the pattern level: Each detector
response constitutes a candidate pattern to be classified. These candidates are represented
in terms of application-specific features to be described in Section 6.2, which are designed
to separate responses induced by T from those induced by A. To this end, the employed
features collect information about local spatial and spatiotemporal intensities, and shape of
the response region for each candidate pattern. The target patterns, i.e. the patterns due
to nano-objects, exhibit a characteristic geometrical and visual appearance, allowing their
discrimination from spurious non-target detector responses. This discrimination is realized
by the classification process depicted in Figure 6.1. Before a guided tour through this figure
is conducted, the required terminology will be defined.

Terminology 6.1. The classification problem addressed by the pattern classifier distinguishes
two classes, called target and non-target. The target class is the positive class and
corresponds to the True Positive (TP) detector responses. The non-target class is the negative
class and corresponds to the False Positive (FP) detector responses. Classifying a candidate
pattern means assigning it to one of the two classes. The name of the class assigned to a
pattern is also denoted as its (class) label. Two types of labels are distinguished: Ground
truth labels are obtained by matching detected patterns either to synthetic ground truth or
to ground truth obtained by letting a human expert manually annotate real PAMONO sensor
data, cf. Section 5.8. Predicted labels are the labels predicted by a classifying model which
is applied to feature vectors extracted from the candidate patterns provided by the detector. In
the context of classification, detected patterns are often referred to as examples. An example
consists at least of a feature vector and may optionally be annotated with a class label, making
the tuple consisting of the feature vector and the label a labeled example. Note that examples
can be either ground truth-labeled or prediction-labeled, depending on the source of the
label.

Given the prerequisites from Terminology 6.1, an overview of the classification process in
Figure 6.1 can be given. The organization of this chapter follows the order in this process.

1. Feature extraction (cf. Section 6.2) constitutes a connector between the pattern
detector and the pattern classifier. Unlike the detector, the classifier does not operate
on per-pixel intensity data but on per-polygon feature vectors, and the feature extraction
module is responsible for the corresponding transformation. Its input is the output
of the pattern detector, consisting of detected patterns represented as polygons and
an estimate of the T ⋅A component. Each polygon is located on one of the images in
T ⋅A, which are used for extracting intensity-based features. In the output of feature
extraction, each pattern is represented in terms of a vector of feature values.
Labeled and unlabeled feature vectors are used by the classifier, aiming at two different
purposes:
(a) Labeled feature vectors are used in the supervised learning procedure depicted in

the upper part of Figure 6.1. In the figure, these vectors are denoted as “Training
Patterns as Features”. These labeled examples are created by matching synthetic
ground truth to detected patterns. The ground truth labels provided by matching

144 Chapter 6. Pattern Classifier for PAMONO

enable utilization of supervised learning algorithms. Training examples must be
represented in the same feature space as the input to be classified, and they must
be generated using the same parameter set for the pattern detector. These labeled
feature vectors undergo the preprocessing described in points 2. to 4. and are used
to learn the classifying model as discussed in point 5.

(b) Unlabeled feature vectors are the representation of the input candidate patterns
to be classified, as depicted in the lower part of Figure 6.1. Feature vectors are
classified by applying the classifying model learned in the training phase, after
they underwent the same preprocessing in terms of normalization and feature
selection. Hence the actual classification of the input patterns consists of applying
the outputs generated in the training phase.

2. Balancing class prevalence (cf. Section 6.3) is the first optional preprocessing module
that can be employed in the training phase of the pattern classifier, cf. upper part of
Figure 6.1. It is applied solely to the training data and serves to balance the frequencies
with which the two class labels occur in the training data. Doing so is important for
some learning algorithms to prevent class label prevalence from becoming an implicit
weight on class importance [HG09].

3. Feature scale normalization (cf. Section 6.4) is the second optional preprocessing
module. It serves to put the values observed over different feature dimensions on the
same scale, thus enabling comparison of feature values across dimensions and preventing
large-valued feature co-domains from acting as an implicit weighting factor on feature
importance, e.g. in Euclidean distance computations. Feature scale normalization is
only required for learning algorithms involving feature comparisons across dimensions.

4. Feature selection (cf. Section 6.5) is the third and last optional preprocessing module.
It serves to determine those dimensions of feature space that are particularly important
with regard to the class label. This can be exploited e.g. for faster model application
by restricting the learning algorithm to use only the important features, or it can be
utilized to assess the merit of the extracted features.

5. Learning algorithms (cf. Section 6.6) constitute the only non-optional module in the
training phase. A learning algorithm receives the (optionally preprocessed) training data
as input, along with algorithmic parameters configuring that learning algorithm. Via
supervised learning it creates an abstraction of the labeled training data and encodes
this abstraction in a classifying model which is used to predict class labels for the
unlabeled input examples.

Note that during the Optimization stage of SynOpSis, i.e. in the upper pattern classifier
depicted in Figure 3.2, the classification is conducted within a five-fold cross-validation
[Koh95], cf. Section 3.9. The reason is that in the Optimization stage, the task of the pattern
classifier is not computing a classifying model but measuring the quality of the current
parameter set of the learning algorithm in terms of the objective functions to be optimized.
The cross-validation serves to avoid undue optimism in evaluating these objectives, and the
output objectives are the averages achieved over its folds.

Feature extraction and applying the classifying model are real-time capable and run on
the Graphics Processing Unit (GPU) [Lib15a; Lib15b], thus attaining real-time capability of
the Application stage of SynOpSis.

6.2. Feature Extraction 145

6.2 Feature Extraction

Feature Extraction is the first module from Figure 6.1 to be presented. It precedes the actual
pattern classifier and receives the outputs of the pattern detector from Figure 5.1 as inputs.
Consequently, the input of feature extraction are the polygons from segmentation and the
processed images estimating the T ⋅A component of Equation (4.1) which are provided by
the denoising module of the detector. Now the features to be extracted aim at separating
T from A on the polygon level by aggregating information from all three dimensions of the
input data over a local region defined by each polygon.

Since the T ⋅ A estimate is used as the data source from which the intensity-based
features are extracted, neighboring pixel intensities are comparable: The high-amplitude,
high-frequency background signal B dominating the T ⋅A components in the original input
has been removed. Furthermore, the noise component N has been attenuated, thus improving
feature quality.

Like for the pattern detector, all computations involved in feature extraction are carried out
in a streaming setting on the GPU [Lib15a], attaining real-time capability of the Application
stage of SynOpSis and accelerating global optimization, where features have to be extracted
for each examined detector parameter set in order to compute classification performance. The
inputs of feature extraction already reside in GPU memory because they are computed there,
within the detector. Hence, the speedup of parallel GPU computing can be exploited without
incurring costs in terms of additional memory transfer time. Furthermore, the intensity-based
features involve computing per-pixel feature maps as an intermediate step, with only local
operations to be executed on each pixel. This lends itself to an efficient GPU implementation
[Lib15a].

The output of feature extraction consists of one feature vector per input pattern, where
each input pattern is represented as a polygon in the spatiotemporal coordinate system
underlying T ⋅A. Feature vectors aim at separating classes by characterizing polygon shape
and the underlying spatial and spatiotemporal intensity distributions. A total number of 67
real-valued features is computed, thus producing one feature vector f ∈ R67 for each polygon
in the input.

The extracted features can be divided into three different categories: Features of polygon
shape are presented in Section 6.2.1. Section 6.2.2 is concerned with features of local intensity
distribution in the spatial dimensions, while Section 6.2.3 presents features of local intensity
distribution in the spatiotemporal domain, i.e. over all dimensions of T ⋅A.

6.2.1 Features of Polygon Shape

Features of polygon shape measure geometric properties of the vector of points defining
each polygon that is output by the pattern detector in Figure 5.1. Temporal coordinates
of polygons are not considered. Most of the computed shape features are based on the
work by Landini [Lan06] and have been examined in the context of PAMONO in [SWL+11].
Furthermore, intensity-weighted central moments [Hu62] and an intensity-weighted measure
of polygon elongation [JT81] have been added, resulting in the overall feature list presented
in the following.

146 Chapter 6. Pattern Classifier for PAMONO

List of Features of Polygon Shape

farea

The first feature farea [Lan06] measures the area covered by the polygon.
fperim

The perimeter feature fperim [Lan06] is the sum of the lengths of all line segments
delineating the polygon.

fwidth
AABB

Feature fwidth
AABB [SWL+11] is defined with respect to the Axis-Aligned Bounding Box

(AABB) of the polygon. The AABB is the smallest rectangle that encompasses the
polygon and consists solely of lines that are parallel to one of the axes of the image
coordinate system. Feature fwidth

AABB is the extension of the AABB in the x-direction.
fheight

AABB
Analogously, fheight

AABB [SWL+11] measures the extension of the AABB in the y-direction.
faxis1

OBB
The following features are defined with respect to the Oriented Bounding Box (OBB).
The OBB is defined as the smallest rectangle that encompasses the polygon, but in
contrast to the AABB, the sides of the rectangle may be rotated in the image plane.
Then faxis1

OBB [Lan06] is the length of the longer side of that rectangle.
faxis2

OBB
Analogously to faxis1

OBB , faxis2
OBB [Lan06] is the length of the shorter, perpendicular side of

the rectangle.
farea

OBB
The area farea

OBB [Lan06] of the OBB is computed as the product of faxis1
OBB and faxis2

OBB .
faspect

OBB
A further feature related to the OBB is its aspect ratio faspect

OBB [Lan06], i.e. faxis1
OBB divided

by faxis2
OBB .

faxis1
ori

The orientation feature faxis1
ori [Lan06] is defined as the smaller angle enclosed by the

longer side of the OBB and the x-axis.
f rect

Rectangularity f rect [Lan06] is measured as the ratio between the polygon area farea in
the numerator and the area farea

OBB of the OBB in the denominator. Since farea
OBB ≥ farea,

the maximum value one is achieved if the polygon is perfectly rectangular.
f circul

Circularity f circul [Lan06] is defined as

f circul = 4πfarea

fperimfperim (6.1)

and measures the similarity of the polygon to a circle: The maximum value one is
attained if the polygon is a circle, and it decreases with increasing deviation of the
edges of the polygon from approximating a circle.

f compact

Compactness f compact [Lan06], which is defined as

f compact =

√
4
πf

area

faxis1
OBB

, (6.2)

6.2. Feature Extraction 147

also attains its maximum value one for circles but decreases as the polygon becomes
lengthier.

fC2

The central moment feature fC2 [JT81] is an intensity-weighted feature of polygon
shape, relying on the concept of ‘moments of intensity’, originally introduced by Hu
[Hu62]: The coordinates (x, y) of all pixels residing inside the polygon are weighted
with their relative contribution to the total sum of intensities inside the polygon. In
the PAMONO case, these intensities are the T ⋅A estimate output by the detector, cf.
Figure 5.1. The intensity-weighted polygon centroid (x̄, ȳ) is computed as the respective
mean value over all intensity-weighted (x, y) coordinates inside the polygon. Given
(x̄, ȳ), the higher central moments mi,j ∈ R for i, j ∈ N≥0, i + j ≥ 2 are defined as

mi,j = ∑
(x,y) in Polygon

(x − x̄)i(y − ȳ)j(T ⋅A)(x, y). (6.3)

Relying on this equation, the central moment feature fC2 is defined as

fC2 = m2,0 +m0,2

m0,0
(6.4)

with

m0,0 = ∑
(x,y) in Polygon

(T ⋅A)(x, y). (6.5)

fC4

Similarly, the central moment feature fC4 [JT81] is defined as a fourth-order analogon
of the second-order feature fC2 :

fC4 = m4,0 + 2m2,2 +m0,4

m0,0
. (6.6)

f elong

The last considered feature based on moments is the elongation feature f elong [JT81],
which is similar to f compact but in contrast to that incorporates intensity information.
It is defined as

f elong =

√
(m2,0 −m0,2)2 + 4m2

1,1

m2,0 +m0,2
. (6.7)

As a summary on the intensity-moments-based features f elong, fC2 and fC4 , the following
can be said: The elongation feature f elong specifically targets elongated objects. The
central moment feature fC2 collects intensity-weighted information about the variance
of the coordinate distribution in the polygon, while fC4 uses information about its
kurtosis (an intuition behind the notion of kurtosis will be given in the discussion of
feature fkurt

time in Section 6.2.3). Jarvis and Tyson state that fC2 and fC4 are strongly
correlated but that providing information about kurtosis along with variance proved
beneficial in their subsequent classification [JT81].

148 Chapter 6. Pattern Classifier for PAMONO

6.2.2 Features of Spatial Intensities

In extracting the features of spatial intensities, the employed intensities are again the T ⋅A
estimate as output by the detector in Figure 5.1. Since the features are spatial, their extraction
is conducted per image, enabling a more convenient notation by dropping the temporal index
and designating T ⋅A by a single letter: Let η(x, y) denote the image (T ⋅A)(x, y, tc) under
consideration at a certain point of time tc. The examined features are computed over the
entire domain of such an image. In order to obtain per-polygon features from these per-pixel
features, each polygon on the image is assigned the maximum feature value observed within
the polygon boundary.

The first four features of spatial intensities to be presented rely on the Hessian of η(x, y), i.e.
on the matrix containing all second-order partial derivatives of η(x, y) [MSB+13]. This concept
of the Hessian is extended into a scale-space, which usually means that several convolutions
of η(x, y) with Gaussian kernels of increasing standard deviation σ are considered [Lin94], cf.
Equation (5.7). Note, however, that the Hessian matrix is concerned solely with derivatives,
so the computation of the Gaussian-filtered images in the usual space-space is unnecessary.
Instead, the Gaussian-based derivative operators from [FA91] are used, and the scale-space
parameter σ is incorporated into their analytic representation from which the discrete second-
order partial Gaussian derivative operators ∂σxx, ∂σxy, ∂σyx, ∂σyy are sampled: These operators
each derive a 2-D Gaussian function with standard deviation σ (Equation (5.7)) into the
indicated directions and are applied as derivative operators by convolving them with η(x, y).
Increasing σ in this process yields derivatives on coarser levels of scale space. Given these
operators, the per-pixel Hessian matrix Hσ(x, y) of η(x, y) on scale σ is defined as

Hσ(x, y) =
⎡⎢⎢⎢⎢⎣

∂σxxη(x, y) ∂σxyη(x, y)
∂σyxη(x, y) ∂σyyη(x, y)

⎤⎥⎥⎥⎥⎦
. (6.8)

It captures information about local intensity curvature. For increasing scales σ in the
derivative operators, this curvature information considers larger local regions of the image
η(x, y). Using this scale-space extension ensures that target patterns can be characterized
independent of their scale, and since every examined σ defines new features, information from
all these scales can be considered in the classification. For PAMONO, ten linearly-spaced
scales were considered, starting with σ = 0.7 and ending with σ = 7. Therefore, each of the
features presented in the following that is subscripted with σ, actually denotes ten features of
the same type, evaluated on different scales.

List of Features of Spatial Intensities

f trace
σ

The first feature f trace
σ to be computed from the scale-space extension of the Hessian is

defined as its trace:

f trace
σ (x, y) = tr(Hσ(x, y)) = ∂σxxη(x, y) + ∂σyyη(x, y). (6.9)

This definition is equivalent to the image Laplacian [GW07]. It measures total curvature
in the direction of both image axes. The per-pixel values f trace

σ (x, y) are aggregated to a
single per-polygon value by assigning each polygon the maximum feature value observed
within the polygon. Unless stated otherwise, the same holds for all features presented

6.2. Feature Extraction 149

in this and the next section. The rationale behind using the maximum is as follows:
Within the area covered by a polygon, feature values typically vary. For example, with
a curvature-based feature like the Laplacian in f trace

σ , there is typically a single point of
maximum curvature within a polygon. Using the maximum for aggregation yields the
feature value in this point. In contrast, using e.g. the mean makes the feature value
depend on polygon size because the feature value decreases, the more pixels the polygon
covers that exhibit lower curvature. This behavior is undesired, hence the maximum is
used as the final feature value. Its susceptibility to outliers is counteracted by the fact
that the underlying intensities already underwent a denoising procedure and by the
smoothing incorporated in the Gaussian-based derivative operators.

fdet
σ

The determinant feature fdet
σ is the scale-space extension of a feature used by Thomann

et al. [TRS+02]. As the name suggests, it is defined as the determinant of the Hessian:

fdet
σ (x, y) = det(Hσ(x, y)) = ∂σxxη(x, y)∂σyyη(x, y) − ∂σxyη(x, y)∂σyxη(x, y). (6.10)

It quantifies the local intensity curvature in image coordinate (x, y). Regarding the
two rows of Hσ(x, y) as vectors spanning a parallelogram, the absolute determinant
gives the area of that parallelogram, hence fdet

σ is invariant to the relative orientation of
intensity curvature and responds particularly to areas where curvature is large in both
directions, as e.g. in circular structures like the target patterns in Figure 3.1. In contrast
to that, artifacts like the waves in Figure 3.1 are edge-like, exhibiting high intensity
curvature only in one direction. Detector responses due to noise have low curvature
in all directions. Hence fdet

σ is suitable to separate spurious detector responses from
target patterns.

f spot
σ

The fact that intensities around target patterns are expected to be higher than those
caused by artifacts (cf. Figure 3.1) leads to the spot feature f spot

σ , which weights
curvature fdet

σ (x, y) with intensity η(x, y). It is as well a scale-space extension of a
feature from [TRS+02] and is defined as:

f spot
σ (x, y) = fdet

σ (x, y)η(x, y). (6.11)

This product feature responds particularly to spots of high local curvature that are
brighter than others because curvature and intensity are regarded in conjunction.

fblob
σ

A further feature fblob
σ , responding to blob-like structures, can be deduced from the

eigenvalues of the Hessian Hσ(x, y): Let ∣λ1(x, y)∣ ≤ ∣λ2(x, y)∣ denote the two eigenvalues
of Hσ(x, y), sorted by increasing absolute value. The scale σ is omitted in the following
equations to avoid cluttered notation. Then the blob feature fblob

σ (x, y) [MSB+13] is
composed of the following two quantities:

α(x, y) =
√
λ2

1(x, y) + λ2
2(x, y), β(x, y) = ∣λ1(x, y)∣

∣λ2(x, y)∣
. (6.12)

Values of β(x, y) that are close to the maximum of one vote for blob-like intensities
around (x, y) because the amount of curvature λ2(x, y) in the direction of maximum local
curvature is not much larger than the amount of curvature λ1(x, y) in the orthogonal

150 Chapter 6. Pattern Classifier for PAMONO

direction. This happens at circular, blob-like structures. Lower eigenvalue ratios suggest
more elongated structures in η(x, y). However, β(x, y) responds to blobs of arbitrarily
low overall curvature because eigenvalue ratios are considered. Complementing that,
α(x, y) measures eigenvalue magnitudes, such that highly curved blobs are characterized
by high values in both, α(x, y) and β(x, y). One way of formalizing this in a single
scalar is the blob feature by Moon et al. [MSB+13], which is defined as

fblob
σ (x, y) =

⎧⎪⎪⎨⎪⎪⎩

(1 − exp (−α(x,y)2a2)) (1 − exp (−β(x,y)2b2)) if λ1(x, y), λ2(x, y) < 0
0 otherwise.

(6.13)

Negativity of both eigenvalues indicates a blob associated with a local maximum of
intensity and is thus enforced by the condition. If at least one of the eigenvalues is
not negative, fblob

σ is defined to be zero because the target patterns associated with
nano-objects do not cause blobs of locally minimal intensity or intensity saddle points.
The weights a and b allow to control whether fblob

σ is more sensitive to curvature
magnitude or roundness. Both weights were set to 0.5 as recommended in [MSB+13].

fmax
space

As intensities in target patterns are expected to be larger than residual noise intensities
(cf. Figure 4.1b), the feature fmax

space is computed as the maximum intensity in η, observed
within the area covered by each detected polygon.

fmean
space

Analogously, fmean
space is the corresponding average intensity.

f std
space

Furthermore, f std
space is the corresponding standard deviation of the intensities underlying

the polygon area, which is also expected to assume larger values for target patterns
than for residual noise.

6.2.3 Features of Spatiotemporal Intensities

Features of spatiotemporal intensities integrate intensity information from all three dimensions
of the data provided by the PAMONO sensor. Like the purely spatial features, they are
computed from the denoised T ⋅A signal. All features to be presented here are computed
from time series of intensities, measured in the same sliding window along the temporal
axis that was used in background elimination, cf. Section 5.2. Therefore, in the following,
v ∈ RW denotes a single such time series (T ⋅A)(xc, yc, tc −wφ + 1 . . . tc +wρ) observed at a
certain image pixel (xc, yc), within a temporal sliding window of length W , located around
the temporal coordinate tc of the polygon. Here W = wφ + wρ is the total length of the
foreground and background window, cf. Figure 5.2a for an illustration.

For all eligible coordinates (x, y, t), such a time series v = (v1, . . . , vW) is regarded, and the
time series features presented in the following list are computed. Indices (x, y, t) are dropped
for a less cluttered notation. While this covers the temporal dimension, information from
the spatial dimensions is considered by aggregating time series features over each polygon:
Again the maximum feature value observed in the area covered by a polygon is used as the
aggregated feature value assigned to that polygon. The list of time series features computed
in this process was used by Janidarmian, Radecka, and Zilic in the context of classifying knee
pathology [JRZ14] from Electromyogram (EMG) and goniometer data.

6.2. Feature Extraction 151

fmean
time

Feature fmean
time is the temporal analogon of the spatial fmean

space and is computed as the
mean intensity over all values in v, cf. also Equation (5.16).

f cross
time

Feature f cross
time counts the number of times that v crosses its mean value fmean

time . It is
analogous to the number of zero-crossings after the mean has been subtracted.

f std
time

Feature f std
time is the temporal analogon of the spatial f std

space and is computed as the
standard deviation of the intensities in v, cf. also Equation (5.17).

fCV
time

The coefficient of variation fCV
time is the standard deviation f std

time divided by the mean
fmean

time . As units are eliminated by normalizing with fmean
time , the coefficient of variation is

better suitable than f std
time for comparing time series with different ranges of intensity.

f skew
time

The skewness feature f skew
time examines the distribution of intensities in v and, as an

illustration, measures whether the histogram of intensities is ‘more heavy’ on the left
side of the mean (f skew

time < 0) or on the right side of the mean (f skew
time > 0). It is computed

as

f skew
time = 1

(f std
time)

3
W

W

∑
i=1

(vi − fmean
time)3 . (6.14)

fkurt
time

Kurtosis fkurt
time is a fourth-order analogon of skewness, defined as

fkurt
time =

1
(f std

time)
4
W

W

∑
i=1

(vi − fmean
time)4 . (6.15)

Kurtosis attains larger values for time series with an intensity distribution with few
large outliers than for one with many small outliers.

fL1AC
time

The lag-one-autocorrelation feature fL1AC
time measures the cross-correlation of the time

series v with itself, shifted by one temporal coordinate unit:

fL1AC
time = ∑

W−1
i=1 (vi − fmean

time) (vi+1 − fmean
time)

∑Wi=1 (vi − fmean
time)2 . (6.16)

fRMS
time

The root mean square feature fRMS
time measures variability of the time series v about

zero (as opposed to the standard deviation f std
time, measuring variability about the mean

fmean
time). It is defined as

fRMS
time =

¿
ÁÁÀ 1

W

W

∑
i=1
v2
i . (6.17)

fPPA
time

The peak-to-peak amplitude fPPA
time is the difference between the maximum of v and its

minimum. It was already used in time series preselection, cf. Equation (5.9).

152 Chapter 6. Pattern Classifier for PAMONO

Summary

In this section, a total number of 67 features were presented, aimed at separating target
patterns from non-target detector responses in a subsequent supervised classification process.
These features subdivide into 15 features of polygon shape, presented in Section 6.2.1, 43
features of spatial intensities, presented in Section 6.2.2, and nine features of spatiotemporal
intensities presented in Section 6.2.3. The number of 43 spatial features arises from four
scale-space features being computed on ten scales each, plus three spatial features being
evaluated on the input scale. All features are computed in a real-time-capable streaming
setting on the GPU. An evaluation of feature importance and quality will be given in Sections
6.7.3 to 6.7.4.

6.3 Balancing Class Prevalence

After feature extraction, the pattern classifier in Figure 6.1 is used to assign predicted class
labels to the obtained feature vectors. In order to do so (lower part of the figure), information
from the training phase (upper part of the figure) is required. This and the following three
sections describe the four modules used in the training phase, starting with the optional class
balancing module.

Algorithms for class balancing receive labeled data as input, possibly exhibiting severe
class imbalance, i.e. class prevalence differs considerably between classes. Balancing algorithms
serve to even out such differences. Applying a balancing algorithm to the training data before
learning the classifying model counteracts the tendency of some learning algorithms to focus
on over-represented classes, neglecting the correct classification of the classes for which only
few examples occur in the training data. Learning from a dataset with severe between-class
imbalance, e.g. with majority class prevalence exceeding minority class prevalence by a factor
of 100 or 1000, may result in a large proportion of minority class examples being classified
into the majority class. If the minority class is e.g. people bearing a certain pathology, many
of these people will be erroneously classified as healthy. Using the PAMONO sensor as an
example, if viral nano-objects are the minority class, they will be erroneously classified as
artifacts, thus preventing the correct diagnosis of an infection and distorting derived estimates
of virus concentration [GTÜ+11]. Speaking more generally: If in a given application scenario,
the cost of misclassifying a minority example is higher than for misclassifying a majority
example, class balancing may serve to reduce costs by reducing the number of misclassified
minority examples [HG09].

Besides the issue of between-class imbalance described above, within-class imbalance may
pose another problem: It arises if some parts of feature space are better covered with examples
of a certain class than others. The sparser parts tend to be smoothed away by learning
algorithms. Hence, if the data to be classified contains many examples from such regions,
classification quality will be poor. Therefore, some class balancing algorithms focus on sparsely
populated regions, thus addressing this issue [HG09]. Note however that distinguishing sparse
regions due to lack of examples from sparse regions due to outliers may pose a further issue.

Related Work

He and Garcia give a survey, on the topic of learning from imbalanced data [HG09]. They
summarize a number of methods that have been proposed to tackle imbalance in binary

6.3. Balancing Class Prevalence 153

classification problems, hence ‘majority’ and ‘minority’ each denote one definite class in the
following. As classification in PAMONO data analysis is binary as well, the multi-class case
is not explicitly covered in this section but a short outlook concerning one approach is given
at the end of Section 6.3.2.

The methods surveyed by He and Garcia can, on a coarse level, be divided into the
following five categories [HG09]:

• Random Oversampling and Undersampling:
Random over- and undersampling are the simplest methods to modify class balance.
Oversampling randomly selects and replicates examples from the minority class, until
the desired class ratio has been reached. One drawback is the tendency of overfitting
the classifier toward the replicated examples because multiplicity may act as an implicit
weight in their favor. Undersampling randomly removes examples from the majority
class until the desired class ratio has been reached. Here a major drawback lies in
wastage of labeled training data from the majority class.

• Informed Undersampling:
Informed undersampling tries to overcome the drawbacks of random undersampling by
compensating for the information loss incurred by leaving out examples. One way of
doing so is the EasyEnsemble approach [LWZ09]: Instead of balancing the input for a
base learner, an ensemble [HTF09] of multiple instances of the base learner is used, each
trained from the full minority set and a different subsample of the majority dataset,
attaining a user-definable class ratio. An alternative is BalanceCascade [LWZ09], which
constructs an ensemble as a boosted cascade of classifiers [HTF09], where in each
iteration, majority class examples are identified as expendable if they are already
correctly classified by the classifier from the previous iteration.

• Synthetic Sampling with Data Generation:
Synthetic approaches differ from undersampling because instead of discarding majority
examples, minority examples are added. They differ from oversampling because these
examples are not replicate copies of minority examples, but they are synthetically
created new data points, computed from given minority examples. The Synthetic
Minority Over-Sampling Technique (SMOTE) [CBH+02] is an example of such an
approach and will be presented in Section 6.3.1.

• Adaptive Synthetic Sampling:
Taking also the majority class into account during synthetic data generation yields
adaptive synthetic sampling methods: The key component of such techniques is the
strategy of how to select minority examples from which to generate synthetic examples.
Taking the surrounding majority examples into account within this process adapts the
synthesis strategy to the majority set. An example for such a technique is Borderline-
SMOTE [HWM05], which creates synthetic examples particularly on the borderline
between classes in feature space. A more recent adaptive approach is Adaptive Synthetic
Sampling (ADASYN) [HBG+08], which will be presented in Section 6.3.2.

• Cost-Sensitive Learning:
In cost-based approaches to imbalanced learning [PMM+94], the number of examples in
the input dataset is not altered, but instead the misclassification costs for minority class
examples are chosen larger than for majority class examples. To this end, Domingos
proposed a general method for making classifiers cost-sensitive [Dom99].

154 Chapter 6. Pattern Classifier for PAMONO

An alternative applicable in the case of large training datasets like in Section 5.5, is
exploiting the clustering part of a condensed k-Nearest Neighbors (k-NN) classifier for class
balancing: Letting the clustering compute the same number of cluster centers for each class,
balances class prevalence in the training data of the k-NN classifier. This was discussed in
detail in Section 5.5.3. For a discussion of further balancing techniques, omitted here for
brevity, the reader is referred to [HG09].

The remainder of this section is structured as follows: Section 6.3.1 presents the SMOTE
procedure and identifies its major drawback, which is counteracted by the ADASYN al-
gorithm presented in Section 6.3.2. ADASYN uses SMOTE as a subroutine and is the
technique employed to realize the class balancing strategy of SynOpSis, which is presented in
Section 6.3.3.

6.3.1 Synthetic Minority Over-Sampling Technique (SMOTE)

The Synthetic Minority Over-Sampling Technique (SMOTE) [CBH+02] oversamples the
minority class without introducing replicates. Instead, new examples are synthesized by linear
interpolation between existing examples. The process works as follows: Let S = Smaj ⊔ Smin
be the overall unbalanced dataset, disjointly composed of the majority set Smaj and the
minority set Smin. While the desired class ratio has not yet been reached, SMOTE repeats
the following procedure: A minority example, represented by its numerical feature vector
fa ∈ RF , is randomly drawn from Smin. Then for a given Ks, the Ks nearest neighbors1 in
feature space of fa from the set Smin are determined. One of these neighbors is randomly
drawn as the interpolation target fb ∈ RF , and a synthetic new example f̂ ∈ RF is created as

f̂ = fa + r(fb − fa), (6.18)

where r is randomly drawn from the open interval]0,1[. Hence the synthetic example f̂ is
convexly interpolated between fa and fb, with higher values of r increasing its similarity to
fb. During this process, all synthetically created examples are stored in the set Ŝ, and the
output dataset with the desired class prevalence is obtained as B = Smaj ⊔ Smin ⊔ Ŝ.

Figure 6.2a shows the result of applying SMOTE to an imbalanced toy dataset in two-
dimensional feature space. The majority class consists of 10000 examples, indicated as blue
dots, while the 500 minority examples are colored turquoise. Applying SMOTE up to perfect
class balance yields the 9500 synthetic minority examples depicted as yellow dots. They reside
on straight lines between minority examples, due to the linear interpolation in Equation (6.18).
Such lines exist in the entire convex hull of the minority point set in feature space.

By not introducing replicates into its output, the SMOTE algorithm results in fewer ties
in neighborhood computations over examples in feature space, which was demonstrated to

1Note that this step assumes normalized feature scales if Euclidean distance is used to measure point
distance. For feature scales that are not normalized, the scales of the different dimensions of feature space
might be incomparable, with features on larger scales dominating those on smaller scales in Euclidean distance
computation. Any of the techniques for normalization to be presented in Section 6.4 can be used for this
purpose. It is advisable to apply this normalization only within the context of neighborhood search in SMOTE
and not propagate it into further processing steps because the final normalization (if required for the learning
algorithm to be employed, e.g. in case of a k-NN or SVM learner, cf. Section 6.6) should also consider the
synthetic examples newly created by SMOTE. An alternative to explicit feature scale normalization that
was chosen in the PAMONO context is to use standardized Euclidean distance which implicitly embeds a
unit-variance normalization (cf. Section 6.4) into the distance metric.

6.3. Balancing Class Prevalence 155

f1

f
2

(a) SMOTE
f1

f
2

(b) ADASYN

Figure 6.2: SMOTE versus ADASYN – Example. (a) shows the result of applying SMOTE in balancing
a binary toy problem in two-dimensional feature space. (b) shows the corresponding result
of ADASYN. The majority class (blue dots) contains 10000 examples, and the minority class
(turquoise dots) has size 500. While SMOTE distributes the creation of synthetic examples
(yellow dots) evenly across the original minority examples, ADASYN focuses synthesis in the
borderline regions between minority and majority. Examples in these regions are typically harder
to learn due to their proximity to class boundaries, and creating more examples of this kind was
demonstrated to be beneficial in practice in [HBG+08].

be beneficial for learning algorithms in practice [CBH+02]. As a drawback, the expected
same number of synthetic examples is created from each minority example, i.e. regions that
are already well-covered with minority examples are treated the same as regions where such
examples are rarer. Furthermore, no information about neighboring majority class examples
is considered, ignoring that borderline examples, i.e. examples located in between classes in
feature space, are the hardest-to-learn examples, typically requiring more data to be correctly
represented in the learned classifier than examples in regions where only one class is present
[HG09].

6.3.2 Adaptive Synthetic Sampling (ADASYN)

The drawbacks of the SMOTE procedure [CBH+02] mentioned in the previous paragraph
are addressed by the Adaptive Synthetic Sampling (ADASYN) approach [HBG+08]. It
extends SMOTE with a more advanced procedure for nonuniform selection of seed examples
for synthesis: More synthetic examples are created in the vicinity of the boundary between
the two classes, than in homogeneous minority class regions. Hence, examples are created
particularly in the hard-to-learn borderline regions, cf. Figure 6.2b, which is expected to be
beneficial in learning a classifier [HBG+08].

ADASYN works as follows [HBG+08]: Firstly, the number G ∈ N≥0 of examples to be
synthesized is computed as

G = b(∣Smaj∣ − ∣Smin∣), (6.19)

where b ∈ [0,1] determines the amount of balancing to be applied. Choosing b = 1 means that
the ADASYN result will exhibit perfect class balance, while b = 0 leaves the input unchanged.

156 Chapter 6. Pattern Classifier for PAMONO

Thus b controls by how much class balance is improved, compared to the input dataset. For
each minority example fi ∈ RF from Smin, its Ka nearest neighbors2 in the full input set
S = Smaj ⊔ Smin are determined. As it is known, whether a neighbor is from the majority
class, the following ratio gi ∈ [0,1] can be computed for each examined minority example fi:

gi =
1
z

Mi

Ka
. (6.20)

In this ratio, Mi is the number of majority-class neighbors of fi, hence the right fraction is
the relative proportion of majority class neighbors of fi. The normalization constant z serves
to ensure that ∑∣Smin∣

i=1 gi = 1, making each gi the relative proportion of synthetic examples to
be created using fi as the seed example. This implements the heuristic of creating synthetic
examples particularly for minority examples surrounded by a large proportion of majority
examples. The relative proportions gi are converted to absolute per-example values Gi by
computing

Gi = giG (6.21)

and rounding the result Gi to the nearest integer. As the gi were normalized to sum to one,
the Gi sum to the total number G of synthetic examples to be created (ignoring rounding
errors). As a last step, the SMOTE procedure from Section 6.3.1 is used to create Gi
synthetic examples for each original minority example fi. Hence ADASYN replaces the
random selection of minority seed examples in SMOTE with a more systematic approach
focusing specifically on examples with a large proportion of majority neighbors, thus residing
closer to class boundaries in feature space. This difference can be seen in Figure 6.2 by
comparing the SMOTE result in (a) to the ADASYN result in (b): ADASYN focuses the
creation of synthetic examples (yellow dots) in the vicinity of minority examples (turquoise
dots) that are harder to learn due to their proximity to class boundaries.

Note that while being presented here for binary classification problems, ADASYN can
be easily extended to the multi-class case by running it multiple times: The number G of
desired synthetic examples for each minority class is determined with respect to the majority
class only, while nearest neighbor search can be carried out in a minority-versus-all-other-
classes setting, such that class boundaries with respect to all other classes are considered in
determining the weights gi for each minority. The union of all synthetically created minority
class examples over all minority sets then balances the overall multi-class dataset.

6.3.3 Balancing in SynOpSis

In the pattern classifier of SynOpSis shown in Figure 6.1, class balancing is an optional
module that can be enabled and disabled. If enabled, any training of a classifying model is
carried out with respect to training data that has been balanced using ADASYN, with the
goal of preventing the learning algorithm from focusing on the majority class (upper part of
the figure). In contrast to that, any data the trained classifying model is applied to is not
balanced (bottom part of the figure). Hence all measures of classification quality employed
during optimization, for model selection, performance estimation and reporting results, are

2The same rationale on feature scale normalization as in the previous footnote concerning SMOTE applies,
cf. Section 6.3.1. ADASYN uses SMOTE as a subroutine, and the value of Ks chosen for the SMOTE
subroutine may be different from the value of Ka used in ADASYN.

6.4. Feature Scale Normalization 157

measured with respect to the class prevalence actually observed in the detector output. This
enables a representative assessment of the analysis outcome. Empirical results concerning the
effect of balancing on PAMONO data analysis are reported in Section 6.7.2, along with the
employed parameter choices.

6.4 Feature Scale Normalization

In the context of learning a feature-based classifier, feature scale normalization means putting
the different dimensions of feature space, which are possibly measured on different scales,
on one single scale. Normalizing feature scales makes feature value magnitudes comparable
between different dimensions of the feature space RF , i.e. between different types of features.
Feature scale normalization operates separately per dimension of RF and is not to be confused
with normalizing feature vectors f ∈ RF to a certain length.

Feature scale normalization is a highly recommended data preprocessing step, if a learning
algorithm is to be used that is based on distance computations involving more than one
feature dimension, such as Euclidean distance between feature vectors. Putting all features
on the same scale before Euclidean distance computations prevents features residing on larger
scales from dominating features on smaller scales. Popular examples of learning algorithms for
which feature scale normalization is recommended are k-NN [HTF09] and SVM [MMR+01],
cf. also [HCL03]. For learning algorithms not involving comparisons of feature magnitudes
between different features, like Naïve Bayes [RN03] and Random Forest [Bre01], the feature
scale normalization module in Figure 6.1 can be deactivated.

As input, feature scale normalization receives a feature matrix F ∈ RE×F , consisting of E
examples, represented as row vectors in an F -dimensional feature space, where each column
of F contains another type of feature. Now affine feature scale normalization computes
per-feature scales si ∈ R and offsets oi ∈ R, as will be described in Section 6.4.1. Assuming si
and oi as given, an entry fe,i of the feature matrix F is affinely normalized by computing

f̂e,i =
1
si

(fe,i − oi). (6.22)

Here i is the index of the regarded feature, and e is the index of the example in the dataset
that is normalized. Scale si and offset oi are computed and applied individually for each
dimension i of feature space, using the examples e in the training data. Assembling the
f̂e,i for all i ∈ {1, . . . , F} into a vector yields the normalized example e in feature space.
Normalizing all examples e in an input dataset this way, yields the output matrix F̂ ∈ RE×F
with normalized feature scales.

6.4.1 Methods for Affine Feature Scale Normalization

Affine methods for feature scale normalization primarily differ in how the per-feature scales si
and offsets oi applied in Equation (6.22) are computed. Aksoy and Haralick give an overview
to be briefly summarized here [AH01].

158 Chapter 6. Pattern Classifier for PAMONO

Unit Range Transformation

The unit range transformation maps all feature values to the interval [0,1]. This is achieved
by determining si and oi as

si = max
e

(fe,i) −min
e

(fe,i), oi = min
e

(fe,i). (6.23)

Note that this transformation is solely defined by the two most extreme values in each
dimension and is thus susceptible to outliers.

Zero-Mean, Unit-Variance Transformation

A zero-mean, unit-variance transformation is particularly beneficial if the distributions of the
individual features are approximately Gaussian: For input features with perfectly Gaussian
distributions, the normalized features follow the standard normal distribution. Scale si and
offset oi are determined as

si = σ (f○,i) , oi = µ (f○,i) , (6.24)

using the sample standard deviation and mean functions defined in Equations (5.17) and
(5.16).

Interquantile Range Transformation

In the presence of extreme outliers, the contribution of every feature value to the sample
standard deviation and mean can make the the zero-mean, unit-variance transformation a
poor choice. An alternative that is less prone to suffer from outliers is an interquantile range
transformation: It works similarly to the unit range transformation but instead of using
the minimum and maximum, and thus the most extreme outliers, si and oi are computed
with respect to more robust rank order statistics defined by the quantiles. As an example, if
quartiles are selected, si is defined as the interquartile range of the data, i.e. the difference
between the upper and the lower quartile. The lower quartile can be defined as the smallest
value that is larger than the quarter of smallest values. Analogously the upper quartile can
be defined as the largest values that is smaller than the quarter of largest values. Then oi is
set to be the lower quartile. This normalization is not influenced by the most extreme half of
values in both directions. Besides these affine methods, nonlinear approaches to feature scale
normalization exist, e.g. rank normalization or clipping of extreme outlier values [AH01].

6.4.2 Applying Feature Scale Normalization

Scales and offsets si and oi for each dimension of feature space are computed from the training
data, using e.g. one of the methods from the previous section. Subsequently, Equation (6.22) is
used to scale every example and feature in the training data and in the input to be classified. It
can hardly be overemphasized that scales and offsets are determined once, from training data,
and that these scales and offsets from training are applied to any input data to be classified
[HCL03], e.g. the real dataset in the Application stage of SynOpSis, cf. Figure 3.2. They
are not computed anew for input datasets. Applying the same normalization to all datasets
ensures that a certain feature value v ∈ R observed in a normalized training feature has the
same meaning as value v appearing in the same normalized feature in any other dataset:

6.5. Feature Selection 159

Feature value relations across datasets are preserved as the same transformation is applied to
all of them, mapping them into the same normalized feature space from which the classifying
model is learned. Separate determination of si and oi for each dataset would destroy this
property. Note however, that e.g. in case of a zero-mean, unit-variance transformation, only
the normalized training set will have zero-mean and unit-variance, while mean and variance
of the normalized input set may slightly deviate.

A further aspect to be considered if feature scale normalization is combined with class
balancing (cf. Section 6.3) is to balance the training data before normalization. Doing so
enables the newly created examples to contribute to the computation of scales and offsets
(oversampling), respectively prevents discarded examples from doing so (undersampling).

6.5 Feature Selection

Feature selection receives the output of the optional feature scale normalization module as
input, consisting of labeled examples in feature space. The task of feature selection is to
identify a subset of the dimensions of feature space that is most important in the classification
task. Hence it is a technique for dimensionality reduction. Reducing the number of dimensions
in the data may aim at a number of different goals. Guyon and Elisseeff in their 2003 survey
on feature selection [GE03], identify three main categories of such goals:

• Feature selection can increase prediction performance, e.g. by counteracting adverse
phenomena related to the curse of dimensionality.

• Time and space complexity is improved: Storing a model learned from fewer dimensions
requires less space, and applying it for predictions is faster.

• New insights into the data and the underlying application problem may be generated:
Finding out which features are important in the application problem to be solved may
aid its understanding. Furthermore, reducing the dimensionality of feature space usually
facilitates data visualization.

In the context of applying SynOpSis for PAMONO data analysis, the primary goal followed
by feature selection is assessing feature importance: The already small number of 67 features
in total does not necessitate feature selection with regard to efficiency, and as will be shown
in Section 6.7.3, the benefit in terms of classification quality is negligible. Therefore, in the
pattern classifier of SynOpSis (cf. Figure 6.1), feature selection is an optional module, serving
in the evaluation of the features themselves, cf. Sections 6.7.3 and 6.7.4. The output of feature
selection is the subset of features that are useful in classifying the input data, cf. bottom part
of Figure 6.1.

6.5.1 Approaches to Feature Selection

Adopting the taxonomy from [GE03], upon which this entire section is based, feature selection
approaches divide into three main categories. Note that the summarizing descriptions provided
here focus on the task of conducting feature selection for a subsequent binary classification.
Regression problems and the multi-class case are covered in [GE03].

160 Chapter 6. Pattern Classifier for PAMONO

Filter Approaches

The main characteristic of filter approaches to feature selection is that features are examined
separately: For each feature separately, a figure of merit is computed, measuring the amount
of information it provides concerning the class label. Examples of such figures of merit are
correlation criteria like the Pearson correlation coefficient [GE03] or inter- and intra-class
distances as used in Section 5.5.2. Features are sorted by decreasing merit and the top-ranking
features are selected. By not considering feature interactions, filter approaches are fast and
scale well. They are typically implemented as a preprocessing step to the actual learning
algorithm of which they are independent. However, learning algorithms can be employed as
single-feature classifiers within filter methods, generating figures of merit in terms of their
performance.

Being univariate is a major drawback of filter approaches because features that yield
no information concerning the class label if regarded separately, can provide considerable
benefit if regarded jointly with other features, cf. Figure 3 in [GE03] for two revealing toy
examples. Univariate methods like filters can not consider such relations. Furthermore, they
prefer perfectly correlated and thus redundant features with larger individual merit over more
complementary features with lower individual merit, even if the combined information from
the complementary features exceeds that of the correlated features.

In the light of these issues, the following distinction can be made: Filter approaches
select the most relevant features in terms of per-feature predictive power concerning the
label. These features are not necessarily the most useful ones in learning a classifier from all
selected features.

Wrapper Approaches

Wrapper approaches aim at resolving this drawback of filter approaches at the expense of
increased computational complexity and decreased scalability. The key idea of wrapper
approaches is wrapping a learning algorithm in the feature selection scheme and using the
performance values it attains on different subsets of features as a measure of the quality of
the entire subset. The utilized learning algorithm is regarded as a black box and it may or
may not be the learning algorithm to be used in the final classification. Two very common
examples of feature selection schemes, i.e. of search strategies with respect to good subsets of
features, are forward selection and backward elimination. Forward selection starts with an
empty set and in each iteration adds the feature to the current set that improves classification
performance the most. It terminates e.g. if a certain number of features has been reached
or if improvement drops below a threshold. Forward selection is a greedy strategy because
decisions to select a certain feature are never revised. Backward elimination analogously
eliminates features from the full set in a greedy fashion.

By considering classification performance as obtained by subsets of features, wrapper
approaches aim at finding features that are useful for classification, in the sense described
above. They might however miss relevant features if these features are highly correlated with
features already selected because such features do not improve classification performance due
to their redundancy. Overfitting the selected subset to the training data is another drawback,
which particularly affects applications where the number of features to select from exceeds
the number of available training examples by a large extent.

6.5. Feature Selection 161

Embedded Approaches

The unifying characteristic of embedded approaches to feature selection is that the feature
selection scheme is directly embedded into the training procedure of the final classifier: In each
step of e.g. a forward selection scheme, the change in objective function values is predicted
for adding or removing a feature to or from the selection. The procedures to compute
such predictions highly depend on the learning algorithm under consideration, and hence
embedded methods differ vastly with respect to the employed learning algorithm. The major
advantage of embedded approaches is their computational efficiency because the classifying
model need not be retrained for every change made to the set of selected features, like in
wrapper approaches. A drawback compared to wrappers is that embedded methods can
not be constructed from existing algorithms in a building block manner, but they must be
specifically designed for each learning algorithm to be used.

6.5.2 Feature Selection in SynOpSis

While any of the feature selection approaches summarized in the previous section can be
used to implement the feature selection module in the pattern classifier (Figure 6.1), the
following choice was taken in the context of PAMONO data analysis: A wrapper approach
with a Naïve Bayes classifier [RN03] was employed for feature selection. The Desirability
Index (DI) of the same objectives as used for the pattern classifier, i.e. the geometric mean
DI of Precision and Recall, was used to measure the quality of a given subset of features
(cf. Section 7.3.3 for concrete desirability settings). Precision and Recall were evaluated in a
five-fold cross-validation with stratified sampling. As the search strategy to optimize the DI,
a single-objective Genetic Algorithm (GA) was chosen, the configuration of which is detailed
as part of the evaluation in Section 6.7.3.

The choice of using this wrapped Naïve Bayes approach for feature selection was taken
for the following reasons:

• First of all, for being a wrapper approach, it is multivariate. The focus of feature
selection in SynOpSis for the F = 67 features used in PAMONO lies on identifying the
most useful features for classification, in order to gain knowledge about which features
work well in conjunction. Hence a method that can find useful subsets and not only
relevant single features is desired.

• In contrast to embedded approaches, choosing a wrapper introduces no assumption
about the learning algorithm used to compute the classifying model. Therefore, the
pattern classifier remains modular, and learning algorithms can be easily switched.

• The selected Naïve Bayes classifier has no parameters requiring optimization to give
good results.

• Besides that, a Naïve Bayes classifier is fast to compute, allowing cross-validation during
feature selection at reasonable computational expense.

• Furthermore, no normalization of feature scales is assumed, so the optional normalization
module in Figure 6.1 remains optional even with the feature selection module enabled.

• With regard to the PAMONO application scenario, the risk of overfitting is comparably
low due to the low number of F = 67 features to select from, in comparison to the
number E of examples typically observed in detecting nano-objects.

162 Chapter 6. Pattern Classifier for PAMONO

A drawback is that feature selection is unspecific to the learner to be finally employed, if that
learner is not Naïve Bayes. If the optional feature selection module described in this section
is enabled, the selected subset is computed with respect to the labeled training data, and the
selection is applied to both, the training data used in learning the classifying model, and any
data to be classified by that model.

6.6 Learning Algorithms

The learning algorithm is the only non-optional module in the training phase of the pattern
classifier, cf. upper part of Figure 6.1. SynOpSis conducts supervised learning, i.e. for each
example in the training data not only a feature vector f ∈ RF is known, but also its associated
ground truth class label t ∈ {c1, . . . , cC}. Besides this training data, that was preprocessed
by a subset or all of the optional preprocessing modules presented in the previous sections,
the learning module receives algorithmic parameters as inputs that configure the learner.
Its output is a classifying model, represented as a function ξ(f) = p, mapping from feature
space to label space. This model assigns a predicted class label p ∈ {c1, . . . , cC} to a feature
vector f ∈ RF . The function ξ(f) is evaluable over the entire feature space, not only in the
supplied training vectors. Therefore, as an illustration, determining ξ(f) can be regarded as
a scattered data approximation from the feature space RF to a discretely-valued co-domain
of labels.

Supervised learning means computing the classifying model ξ(f) from labeled training
data supplied as input. In SynOpSis such data is available via synthesis (cf. Chapter 4)
and matching (cf. Section 5.8). The process of evaluating the function ξ(f) to generate a
predicted class label p ∈ {c1, . . . , cC} will in the following also be referred to as applying the
model. Model application is used to create predictions of class labels for unlabeled input
feature vectors, cf. bottom part of Figure 6.1. In real-time data analysis, as conducted by
SynOpSis in the PAMONO case, learning algorithms for which the classifying model ξ(f) can
be applied in real-time are of particular interest. Section 6.6.3 presents the Random Forest
learner for which real-time capable model application has been implemented on the GPU
by Libuschewski [Lib15b]. Note that the modular structure of SynOpSis allows any other
supervised learner to be used for classification, provided that it accepts the data types of the
features arising in the application case at hand.

In the context of PAMONO, four learning algorithms were examined in SynOpSis, which
will be summarized in the following: Section 6.6.1 depicts the k-NN algorithm as a represen-
tative of lazy learning. Section 6.6.2 presents the SVM learner, based on convex optimization,
while Section 6.6.3 recaps Random Forest, an ensemble learner made from decision trees.
Finally, Section 6.6.4 describes how a Naïve Bayes classifier works. Degrees of freedom
that can be used to configure each learning algorithm are discussed during the respective
presentation, while those algorithmic parameters that are optimized by SynOpSis are listed
as part of the experiment description in the results, cf. Section 6.7.1.

6.6.1 k-Nearest Neighbors Algorithm (k-NN)

The first learner to be presented here is the k-Nearest Neighbors (k-NN) algorithm [HTF09].
It is an example of lazy learning, i.e. training consists solely of storing the training data.
In contrast to non-lazy learners like those presented in the subsequent sections, where the

6.6. Learning Algorithms 163

classifying model is fitted to the training data in a process of abstracting from it, the classifying
model of a lazy learner is simply a copy of the training data itself, leaving any process of
abstraction to be conducted in applying the model. On the upside, training such a classifier
is as fast as creating a copy of the training data. On the downside, depending on the type of
lazy learner, applying it to classify data can be slow due to the lack of preceding abstraction.

The k-NN learner [HTF09] classifies an input example f , represented as a vector in the
feature space RF , by finding the k nearest neighbors of f in the labeled training data and
assigning it to the class observed in the majority of those neighbors. Choosing an even k
can result in ties in this voting scheme, which can be broken, e.g. by randomly assigning
the example to one of the competing majority classes or weighting votes with proximity.
The larger k is chosen, the smoother the class boundary of the classifier will be. Conversely,
decreasing k increases the complexity of the learned model and thus the risk of overfitting
the data. In the extreme case of k = 1, each training example is classified correctly by fully
overfitting the training set, thus providing little abstraction. Generalization performance for
such models is typically very low, cf. also Section 3.9.1, especially Figure 3.10.

Besides the choice of k, the behavior of the k-NN learner is determined by the choice of
the distance measure used in computing the neighbors of an input vector. A very common
choice is Euclidean distance [HTF09], which only works on numerical features and assumes
normalized feature scales. Hastie, Tibshirani, and Friedman recommend using a zero-mean,
unit-variance transformation for k-NN with Euclidean distance [HTF09], cf. Section 6.4.
Further distance measures can be found e.g. in [WNC07] and in Chapter 14 of [HTF09], which
also covers measures that are suitable for categorical and mixed types of features. Depending
on the selected distance measure, further parameters may arise, and the assumption of
normalized feature scales may vanish. For information on how optimization of the k-NN
learner was conducted in SynOpSis, cf. Section 6.7.1.

6.6.2 Support Vector Machine (SVM)

The Support Vector Machine (SVM) [MMR+01] is a method for supervised classification
and regression. The presentation given here will focus on two-class classification because
it is the task arising in PAMONO data analysis. SVM regression is covered e.g. in [SS04],
while an extension to multi-class classification is given in [WW98]. The emphasis of the
following depiction lies not on a formal (re-)statement of how SVMs work but on the roles
and influences of the parameters arising in optimizing SVMs. Detailed formal descriptions of
SVMs can be found e.g. in [MMR+01; Bur98].

The key idea of SVM training can be summarized as follows: Given a labeled training
set in feature space, the SVM algorithm finds a hyperplane that best separates the two
classes. As the criterion defining what a ‘best separation’ is, the so-called maximum margin
is used: The hyperplane is chosen such that the margin between the hyperplane and the
respective closest vectors in both classes is maximized. These vectors that are closest to the
hyperplane and thus reside on the margin are denoted as the support vectors. The further
away from the hyperplane they are located, i.e. the larger the size of the margin, the better
the classes are separated. As the notion of the margin involves point-to-hyperplane distances,
the SVM learner assumes normalized feature scales to avoid dominance of the larger scales
in these distance computations [HCL03]. The techniques from Section 6.4 can be used for
normalization.

164 Chapter 6. Pattern Classifier for PAMONO

Training an SVM is equivalent to determining the support vectors within the training
set, and this task can be formulated as a convex quadratic optimization: The equation to be
optimized results from the objective of maximizing the margin, in combination with Lagrange
multipliers that serve to transform the conditions of correct classification of the training
examples into summands of the objective. A formal derivation of the optimization problem
and its dual can be found in [MMR+01]. The decision boundary defined by the hyperplane is
influenced solely by the support vectors: If any other feature vector is changed, the hyperplane
is not influenced as long as that vector is not changed to become a support vector (or to swap
its side with respect to the hyperplane as discussed below in the context of slack variables).
Applying an SVM model to classify an input example works by determining on which side of
the maximum margin hyperplane its feature vector resides. This can be decided considering
solely the support vectors. As a consequence, the storage requirements of an SVM classifying
model are determined by the number of supports vectors, as only these need to be stored.
This number is often small compared to the size of the training dataset, giving the SVM an
advantage in terms of storage complexity (and application time) over k-NN.

It is important to note that in the data arising in most practical applications, classes
are rarely linearly separable in feature space. In such cases, the optimization problem to be
solved for determining which of the training vectors are support vectors has no solution. Two
mechanisms, described in the following, are used in SVM learners to alleviate this problem.

Slack Variables and the Regularization Parameter C

One way of making the optimization problem solvable in case of data that is not linearly
separable is to introduce so-called slack variables into the optimization problem. These
slack variables relax the constraints imposed by the margin by allowing some examples to be
misclassified, making it a soft margin. Each slack variable corresponds to one training example
and assumes value 0 if the corresponding example is classified correctly and lies outside the
margin. Values in]0,1] are assumed if the example is classified correctly but lies inside
the margin, and a value larger than 1 indicates that an example is misclassified [MMR+01].
Hence a solution can be found even for data that is not linearly separable, and that solution
will contain some slack variables larger than 1. The regularization parameter C ∈ R>0
is the weight with which the slack variables contribute to the optimization problem, and
therefore it controls the magnitude of misclassification penalty: The larger C, the stronger
misclassified examples are penalized and the more rigid the margin becomes [MMR+01].
C trades off against the size of the margin: The lower C is chosen, the softer the margin,
and consequently the wider it will be because allowing some examples to be misclassified
means that the support vectors can be further away from the hyperplane. Lower choices of C
decrease the risk of overfitting the training data because it decreases model complexity, as
discussed in the context of model selection and illustrated in Figure 3.10.

The Kernel Trick

Another way of letting the SVM cope with data that is not linearly separable is the so-called
kernel trick, which can be combined with the previous approach: It consists of exploiting the
fact that data which is not linearly separable in the original feature space might be linearly
separable if mapped into a space of higher dimension using a nonlinear kernel function.
Even if the data is still not linearly separable in that higher dimension, its separability

6.6. Learning Algorithms 165

typically improves, allowing for a smaller value of C and thus a softer and wider margin. An
illustrative figure visualizing how the kernel trick works can be found in [Fle08] (Figure 4).
Common choices of nonlinear kernel functions are polynomial, Radial Basis Function (RBF)
and sigmoid kernels, formally defined e.g. in [Bur98].

Besides the choice of the kernel function to be used, each kernel function itself may
exhibit parameters that require to be configured by the user [Bur98]. Furthermore, the
misclassification penalty C of the soft margin must be chosen [HCL03]. Kernel choice,
parameters, and examined ranges as used for optimizing the SVM learner in SynOpSis are
listed in Section 6.7.1.

6.6.3 Random Forest

Random Forest is an ensemble learner first proposed by Breiman in his seminal paper [Bre01],
upon which this section is based, unless stated otherwise. The idea of ensemble learning is
to combine many weak learners to give one strong learner [HTF09]. In the case of Random
Forest, the weak learner is a tree constructed using the Classification and Regression Tree
(CART) algorithm [BFS+84], which will be explained later in the context of its usage as
a subroutine of the Random Forest algorithm. For now, a tree obtained via CART can be
thought of as single classifier. As its name suggests, CART and resultantly Random Forest
can also be used for regression. This topic is omitted here for brevity, and the reader is
referred to the literature [Bre01; LW02; HTF09].

Random Forest uses bagging (bootstrap aggregation) [Bre96] to create its ensemble of
CART trees: Each tree is grown from a bootstrap sample (cf. Section 3.9.1) of the original
training data, i.e. examples are selected randomly with replacement from the input. Each
bootstrap sample has the same size as the input dataset, and thus an expected ratio of
(1 − 1/n)n ≈ exp(−1) ≈ 0.368 of examples does not appear in each such sample [Koh95].
Aggregation of the individual CART results is done by majority voting over all trees. Using a
randomized ensemble aims at reducing the risk of overfitting the training data, and in Section
2.1 of [Bre01], Breiman has proven that the generalization error incurred in Random Forest
converges as the number of trees is increased. Hence increasing the number of trees does not
increase model complexity in a way that enables the classifier to memorize the training data,
as was the case in Figure 3.10.

The Random Forest learner uses the CART algorithm [BFS+84] as a subroutine. CART
will be summarized now, following [HTF09] but already introducing Breiman’s modifications
with regard to its use in the Random Forest Breiman. Given one bootstrap sample as provided
by the outer Random Forest ensemble algorithm, the construction of a single CART tree in a
Random Forest works as follows: For initialization, a root node is created and all training
data is assigned to that root node. Then, starting with the root node, the following procedure
is conducted and recursively launched for all child nodes spawned in its course: A feature
fs and a threshold ts are selected to disjointly split the data in the node into two subsets,
where one subset contains all data with fs ≤ ts and the other contains all data with fs > ts.
The objective driving the search for appropriate fs and ts is to minimize the impurity of the
class labels in the resulting subsets, i.e. the search for fs and ts aims at producing subsets
containing many examples of one class and as few as possible examples from other classes.
Several measures of impurity exist, the most common of which are summarized now [HTF09]:

166 Chapter 6. Pattern Classifier for PAMONO

• The misclassification error is defined as the relative proportion of examples that
would be misclassified in a majority vote over all examples in the node.

• Cross-entropy quantifies uniformity of the class labels in the node: The more uniformly
class labels are distributed in a node, the higher the cross-entropy, and thus the more
impure the node. Conversely, cross-entropy is zero for pure nodes.

• The Gini index can be interpreted in the following way: The data in the node is
considered as the training data of a classifier that classifies each example as class c with
a probability equal to the relative prevalence of class c examples in the node. Then
the Gini index is the training error of this classifier. Like cross-entropy it grows with
increasing similarity of the class label distribution to a uniform distribution.

Formalizations of these measures of impurity can be found e.g. in Equation (9.17) of [HTF09].
Figure 9.3 in the same book illustrates them for two-class classification tasks. Cross-entropy
and the Gini index are most commonly used in training CART classifiers because in contrast
to misclassification error they are differentiable, such that the search for the splitting feature
fs and threshold ts can readily be conducted via numerical optimization.

Given fs and ts, the data in the current node is split as discussed before, and the two
disjoint subsets of data are assigned to two newly created child nodes. Furthermore fs and ts
are stored in the parent node for applying the model to unseen data. Then the procedure is
launched recursively for the child nodes until a stopping criterion is fulfilled, e.g. the nodes
are pure, too small for further splits, or a maximum depth D of the tree has been reached. In
contrast to the original CART algorithm [BFS+84], the CART trees used in a Random Forest
are not pruned after this growing procedure because aggregation is expected to sufficiently
counteract the risk of overfitting incurred by unpruned trees [Bre01].

A further and more pivotal change to the original CART algorithm Breiman introduced
for Random Forest is that at each node during CART construction, the splitting feature may
be chosen only among a subset of K features, which is drawn i.i.d. at each node from the
full set of features. This extra randomness (in addition to bootstrap sampling) is injected
into CART by the Random Forest algorithm in order to decrease the correlation between
the individual trees in the ensemble: Decreasing K makes feature choice more random, so
the trees are less correlated, which is beneficial for the diversity of classifiers in the overall
ensemble. However, predictive strength of the individual tree decreases because it can choose
from fewer candidate features at each node. An ideal Random Forest aims at low correlation
between trees on the one hand, and individual trees with high predictive strength on the
other hand. Both of these opposing objectives are to a large extent controlled by the choice
of K, realizing a trade-off between them.

Repeating this CART procedure for all bootstrap samples, a Random Forest consisting of
I trees is constructed. Applying that forest to classify a new example relies on the application
of the individual CART trees which works as follows: A new example is classified by using its
feature values to traverse the tree. Traversal starts from the root node and ends in a leaf
node by recursively tracing the path to the child node corresponding to the infinite interval
in which the value observed in the splitting feature resides. Once a leaf of the tree is reached,
the example is classified (by that single tree) as belonging to the majority class observed
in the leaf. This is repeated for all I trees in the forest, with each tree voting for a certain
class. Finally, the classification output of the forest is determined as the majority vote over
its constituent trees.

6.6. Learning Algorithms 167

Properties of the Random Forest Learner

The particular way in which the Random Forest algorithm learns a classifying, respectively
regression model results in a number of advantageous properties, which will be summarized
now. First of all, it requires no normalization of feature scales because comparisons of feature
values only occur for equal types of features, not between different types: Each splitting
operation divides one individual axis of feature space into two parts, and no other feature
dimensions are involved in this split. This makes the Random Forest fast to train compared
e.g. to SVM training, where all features are involved simultaneously in the optimization
problem. Compared to iterative methods like boosting [FS97; JZK+07; HBR+08], the
training procedure is embarrassingly parallel because is uses independent bootstrap samples
and applies CART independently for each such sample. Furthermore, the Random Forest
algorithm has only few parameters that impact results quality and actually need tuning
[LW02]: If model size and application time do not matter, the number I of trees can simply
be chosen as a large-enough constant because an I that is larger than necessary does not
increase overfitting as proven in [Bre01]. The maximum tree depth D is also only of concern
with regard to model size and application time; Breiman e.g. simply uses fully grown trees
[Bre01]. In some practical applications, however, the number K of attributes available for
splitting, was reported to have a considerable impact on results quality [HTF09]. In SynOpSis,
all three parameters I, D and K are tuned in the ranges and for the reasons to be discussed
in Section 6.7.1. A recommended starting value for K is ⌊

√
F ⌋, where F is the number of

features in the dataset [Bre01; HTF09]. With parameters fixed and the classifier learned, the
Random Forest classifier can be applied in real-time on the GPU [Lib15b].

6.6.4 Naïve Bayes

Naïve Bayes [RN03; Ris01] is a learning algorithm that classifies an unlabeled feature
vector f ∈ RF as belonging to the class ck exhibiting the highest conditional probability
of being observed, given that feature vector f has been observed. Stated formally, Naïve
Bayes classifies f into the class ck that maximizes the posterior probability P (ck ∣ f). This
conditional probability is called ‘posterior’ because it depends on an observation of data,
in this case on the feature vector f . Classifying f as belonging to the class with maximum
posterior probability is denoted a Maximum a Posteriori (MAP) decision rule [RN03].

Training a Naïve Bayes classifier means estimating the posterior distribution P (ck ∣ f)
for each class ck on the basis of labeled training data. Applying it for classification means
evaluating these distributions for the feature vector to be classified and outputting the class
ck associated with the distribution exhibiting maximum probability. The method for learning
a single distribution P (ck ∣ f) from the training data can be derived as follows: Firstly, Bayes’
theorem [RN03] is applied:

P (ck ∣ f) = P (ck)P (f ∣ ck)
P (f) . (6.25)

Doing so, restates the posterior distribution in terms of a prior probability P (ck) of observing
class ck not conditioned on any observation, multiplied with the likelihood of observing
feature vector f given that the class label actually is ck, and normalized by dividing by the
overall probability of observing f . As this denominator does not depend on the class label
and is constant for given f , it is not of interest in computing the Naïve Bayes classifier.

168 Chapter 6. Pattern Classifier for PAMONO

Equation (6.25) can be further simplified by introducing the eponymous naïve assumption of
the Naïve Bayes classifier: It is assumed that given the class label, each feature dimension
fi is conditionally independent of every other feature dimension fj in the vector f . Naïve
Bayes classifiers are known to work well, even though this assumption rarely actually holds
in practice [RN03]. Applying the independence assumption to Equation (6.25) decomposes
the class-conditional probability P (f ∣ ck) of observing feature vector f into a product of the
class-conditional probabilities of its scalar components:

P (ck ∣ f) ∝ P (ck)
F

∏
i=1
P (fi ∣ ck). (6.26)

Note that the constant denominator P (f) from Equation (6.25) has been omitted, hence the
proportionality instead of equality. Compared to estimating P (ck ∣ f) directly, the factors
in Equation (6.26) can be more easily estimated from the training data: The class prior
probabilities can be estimated as the class ratios in the training data, and the class-conditional
distributions of scalar feature values can be modeled by fitting e.g. Gaussian distributions to
the per-class feature values observed in the training data.

Naïve Bayes in SynOpSis

In the pattern classifier of SynOpSis, the Naïve Bayes learner is used as a baseline method for
comparison with the three previously discussed learners. This is due to its simplicity and the
fact that it exhibits no algorithmic parameters if the employed model for the class-conditional
feature distributions is assumed fixed. In analyzing PAMONO data with SynOpSis, Gaussian
feature distributions are assumed, hence the Naïve Bayes learner used in this context requires
no optimization. This is useful in ranking the classification quality achieved by the other
learners, given a certain parameterization, and it is furthermore exploited in making the feature
selection scheme described in Section 6.5 independent of classifier parameters. Furthermore,
Naïve Bayes requires no normalization of feature scales because only probabilities are regarded
in the MAP decision rule based on Equation (6.26).

6.7 Results

In the following sections, the pattern classifier from Figure 6.1 is evaluated on PAMONO
data, and three design decisions are finalized with regard to the obtained results. The
first decision is the choice of the learning algorithm to be used (Section 6.7.1), followed by
decisions on whether to enable or disable the class balancing module (Section 6.7.2) and the
feature selection module respectively (Section 6.7.3). Justifying these design decisions is the
primary task of the conducted evaluations because these decisions remain fixed in the overall
evaluation conducted in Chapter 7. Besides taking these decisions in Sections 6.7.1 to 6.7.3,
Section 6.7.4 provides insight into the usefulness and distribution of some of the features
presented in Section 6.2.

The order of presentation in this results section is slightly different from that in Figure 6.1,
along which the methods within this chapter were presented. This reordering serves to
facilitate taking the design decisions: Choosing a learner first means that class balancing and
feature selection need only be evaluated for one learner instead of four, thus a combinatorial
explosion of the number of results to report is avoided, and results need not be aggregated

6.7. Results 169

over learners which would obscure important information. Note that Sections 6.7.1 to 6.7.4
each cover one module from Figure 6.1. The feature scale normalization module is omitted in
this section structure because it was fixed as a zero-mean, unit-variance transformation for
those learners that require it. An argument for this choice will be provided in Section 6.7.4.
While Sections 6.7.1 to 6.7.3 cover modules from the training phase of the pattern classifier,
Section 6.7.4 is concerned with the feature extraction, conducted before training.

Employed Input Data

As inputs for the conducted evaluations, only pattern detector results from sequential opti-
mization were used, i.e. the detector was optimized independently, without taking subsequent
classifier results into account. This is important in choosing the learning algorithm in Sec-
tion 6.7.1: Optimizing the detector independently means that (unlike in global optimization)
no channel exists over which a subsequent learning algorithm used in the classifier can feed
information back into the optimization of detector parameters. Otherwise the comparison
would not be fair because the learning algorithm could influence detector parameters in a
way making detector results particularly well-suited to be classified with that certain learning
algorithm. Furthermore, only detector results were examined for which detector Precision
was below 0.98 on the synthetic training data. That means there are at least two percent of
FP detector responses in the training data, which are to be eliminated by the classifier. The
number of such detector results was 21, resulting from different PAMONO experiments (cf.
Table 7.1), desirability modes (cf. Section 7.3.3) and cross-validation folds (cf. Section 7.3.4).

Optimization of Learner Parameters

For a given setup of the pattern classifier in Figure 6.1, e.g. for enabled balancing, disabled
feature selection and the choice of a Random Forest learner, the parameters of that learner are
optimized via SynOpSis. This is repeated for all setups in question, e.g. for contrasting with a
setup where balancing is disabled, which allows evaluating the effect of the balancing module.
The obtained results are aggregated over all 21 examined detector results, each undergoing a
separate optimization. Hence parameter optimization via SynOpSis is conducted separately
for each setup and detector result, allowing to assess how changes in the setup affect classifier
performance, as will be done in Sections 6.7.1 to 6.7.3.

Optimizing the pattern classifier via SynOpSis works as follows in this evaluation: Algo-
rithmic parameters of the learner are optimized with respect to the two objectives Precision
and Recall. In order to fully explore the objective space and not narrow the search region, no
Desirability Functions (DFs) are applied during optimization. The settings configuring the
Genetic Algorithm (GA) are the same as used in the overall sequential classifier optimization
detailed in Section 7.3.2. The best-performing individual from the front is determined as
the maximizer of the geometric mean Desirability Index (DI) of Precision and Recall, cf.
Section 7.3.3 for the employed desirability functions. Optimization is carried out on the
training set, the best-performing individual is selected with respect to the DI on the validation
set, and performance is estimated/evaluated with respect to the test set, cf. Terminology 3.3.
Furthermore, the real sensor data to be classified was manually annotated, and classifier
performance attained on this data is reported as well.

170 Chapter 6. Pattern Classifier for PAMONO

Classifier Training and Evaluation of Results

Note that the synthetic data (training, validation and test set) is classified using a model
learned from the training data only, while the real sensor data is classified using a model
learned from the concatenation of all synthetic data. In both cases, the same algorithmic
parameters for the learner are used, as provided by the optimization.

All results are reported in terms of box plots [MTL78] of Precision and Recall, as attained
over the 21 examined detector results. Separate box plots are provided for the training,
validation and test sets, and for the real sensor data to be classified.

Measurement of Runtime

All timing measurements reported in this section were taken on the following system:

System Specification 6.1. Intel® Xeon® E5-2650 v3 at 2.3 GHz. Cache size: 25 600 kB.
Operating system: Virtualized Microsoft® Windows® 7, running in libvirt on the Kernel-
Based Virtual Machine (KVM) of a Linux host operating system. The Virtual Machine (VM)
used four cores and 16 GB of the 2133 MHz DDR4 RAM.

The reported times are mean values over the per-individual times observed during the
conducted optimizations. Since a single evaluation of objectives is realized as an individual
executable call, these times include the startup of the MATLAB compiler runtime, parsing
the input Comma-Separated Values (CSV) files and starting the learning environment. These
overhead operations introduce a constant offset to the measured runtimes.

Section Overview

With these prerequisites stated, Section 6.7.1 finalizes the choice of the learning algorithm.
Sections 6.7.2 and 6.7.3 examine whether it is advantageous to enable or disable class
balancing and feature selection, respectively. Finally, Section 6.7.4 investigates usefulness
and distributions of a subset of the features employed for classification.

6.7.1 Learning Algorithms

In order to choose one of the learning algorithms presented in Section 6.6 to be used in
applying SynOpSis to PAMONO data, a comparative evaluation was conducted. This
evaluation compares classification quality in terms of Precision and Recall, as attained by
the four learners over the 21 examined detector results. SynOpSis is used to optimize the
algorithmic parameters of each learner for each detector result to be analyzed.

Parameters Optimized via SynOpSis

The parameters tuned by SynOpSis will be listed in the following. To limit the search space,
some parameters were kept constant, as indicated by the ‘Constant’ item for each learner.
The configuration of the GA is the same as used in sequential optimization during the overall
evaluation, cf. Section 7.3.2.

6.7. Results 171

k-Nearest Neighbors Algorithm (k-NN)

Constant
Euclidean distance is used to measure the distance between points in feature space. As
recommended for this choice in [HTF09], a zero-mean, unit variance transformation (cf.
Section 6.4.1) is applied to normalize feature scales.

k ∈ {1, . . . ,50}
The number k of examined nearest neighbors is optimized.

Support Vector Machine (SVM)

Constant
An RBF kernel was selected as the constant type of the kernel function. Its parameter
γ, however, is optimized, cf. below. Choosing an RBF-type kernel is recommended as
a general choice, especially if the number of features is smaller than the number of
examples [HCL03], as is the case in PAMONO. RBF kernels are furthermore general in
the sense that they encompass the linear kernel as a special case [KL03] and can mimic
some instances of the sigmoid kernel [LL03]. Apart from kernel choice, a zero-mean,
unit variance transformation (cf. Section 6.4.1) is selected to normalize feature scales.

C ∈ [0.01,100]
The range examined for optimizing the misclassification penalty C takes [HCL03] as
a guideline but decreases the maximum C to obtain a smaller hypothesis space. This
results in a lower tendency of the SVM to memorize the training data and yields
classifying models that are faster to predict because lower values of C result in fewer
support vectors. A grid search for C would typically examine exponentially increasing
values, and it is recommended to make the randomized components of the GA examine
the search space analogously [HCL03].

γ ∈ [10−5,10]
γ is a parameter of the RBF kernel, formally defined e.g. in [Bur98]. For increasing γ,
the classification boundary becomes smoother [CS00], and the chance of misclassifying
training examples increases, along with a decreasing risk of overfitting the training data.
The effect is comparable to decreasing C, but is achieved by increasing kernel size, not
by changing misclassification penalty. Decreasing γ too far enables the trained SVM to
fully memorize the input data, similar to k-NN with k = 1 [Bur98]. The classification
quality achieved by an SVM with RBF kernel critically depends on a good combination
of both, C and γ, which is why both are subject to optimization in SynOpSis. The
range examined for γ was chosen in accordance with [HCL03], and the same rationale
as discussed with C applies, for choosing a GA search strategy mimicking exponential
grid search.

Random Forest

Constant
Cross-entropy is selected as the employed split criterion.

K ∈ {1, . . . ,15}
The number K of features randomly drawn as splitting candidates in each node is
optimized. Note though, that Random Forest is claimed to be quite insensitive to its

172 Chapter 6. Pattern Classifier for PAMONO

parameters [LW02]. They are tuned nonetheless by SynOpSis because in some practical
problems they have a larger impact on prediction quality, as reported in [HTF09]
with respect to K. The importance of K is due to its control over the amount of
randomness in and decorrelation between the individual trees in the forest. Choosing
15 as the maximum value for K allows to nearly double the recommended value [Bre01]
of ⌊

√
F ⌋ = ⌊

√
67⌋ = 8, where F = 67 is the number of features in PAMONO data.

I ∈ {1, . . . ,500}
The number I of trees in the forest just needs to be chosen large enough because it does
not increase the tendency of overfitting as proven in Section 2.1 of [Bre01]. However,
smaller I are beneficial for model application speed.

D ∈ {0, . . . ,20}
Limiting tree depth D is not essential: The original work by Breiman uses fully grown
trees [Bre01]. Hastie, Tibshirani, and Friedman state that tuning D can be motivated
mainly by decreased application time and space requirements to store the classifying
model [HTF09]. They recommend using fully grown trees if fewer tuning parameters
are desired. As this is not the case in PAMONO, D is tuned as well. Note that D = 0
results in fully grown trees.

Naïve Bayes

Constant
Gaussians were chosen to model the class-conditional distributions of feature values in
the training data. No parameters were optimized for the Naïve Bayes learner because it
serves as a baseline comparison.

Impact of Learner Choice on Classification Quality

Figure 6.3 shows box plots of classifier Precision and Recall as attained by the different classi-
fiers on training (a), validation (b), test (c) and the real sensor data (d), cf. Terminology 3.3.
The plotted populations each consist of the 21 detector results described at the beginning
of Section 6.7. Training, validation and test set performances were measured by applying
a classifying model learned from the training set only, while the real sensor dataset was
classified by a model learned from all three synthetic datasets. This also holds for all further
experiments conducted in this section. On the training set in (a), differences between learners
are negligible: All medians are 1, except for Naïve Bayes Recall with a value of 0.95968 and
a large spread as indicated by the Interquartile Range (IQR). Training set performances
include optimism because the data used to train the model is at the same time used for
measurement. Learners allowing for more model complexity than Naïve Bayes can better
(over)fit the training data in (a). Performance on the training data is only reported for
completeness and to give an impression of the magnitude by which performance degrades
as one progresses towards more difficult datasets. Instead, performance should be measured
on an unseen test set, as done in (c). Note that on the validation set in (b) used for model
selection in terms of classifier parameters (cf. Section 3.9.2), performances are similar to test
set performance in (c), thus only the latter is discussed here. On the test set, Naïve Bayes
median Recall decreases by 0.00432, which is a small degradation compared to the other
learners, allowing for more complex models. Median (Precision, Recall) tuples on the test set
are: k-NN: (0.98566,0.96154), SVM: (0.93069,0.99308), Random Forest: (0.99331,0.95597),

6.7. Results 173

KNN SVM RF NB
0.5

0.6

0.7

0.8

0.9

1

Precision

Recall

(a) Training
KNN SVM RF NB

0.5

0.6

0.7

0.8

0.9

1

(b) Validation

KNN SVM RF NB
0.5

0.6

0.7

0.8

0.9

1

(c) Test
KNN SVM RF NB

0.5

0.6

0.7

0.8

0.9

1

(d) Real

Figure 6.3: Choice of Learning Algorithm. Classifier performance as attained by the different learning
algorithms is shown in terms of Precision and Recall. Synthetic datasets, i.e. training (a),
validation (b) and test set (c), were classified using a model obtained from the training data,
while the model classifying the real data was learned from the conjunction of all synthetic
data. Parameters of the learners (if given) were optimized using SynOpSis. Input datasets were
balanced before learning. The Random Forest learner performed best in terms of an unweighted
mean of Precision and Recall on the test and real dataset. This result could be repeated on
unbalanced learner inputs. More details are given in the text.

Naïve Bayes: (0.99320,0.95536). Determining “the best” learner from this information is
a multi-objective decision due to its two objective functions, which could be augmented by
simultaneously considering the spread over the 21 detector results as measured e.g. in terms
of IQR. Regarding solely median Precision and Recall and computing their unweighted mean,
i.e. assigning equal importance to both, the following ranking of learners is attained on the
test set: 1. Random Forest (0.97464), 2. Naïve Bayes (0.97428), 3. k-NN (0.97360), 4. SVM
(0.96189). Since manually created ground truth for the real sensor data was available, the
decision for a certain learner can also be taken with respect to that data, shown in (d). Here
the median (Precision, Recall) tuples are: k-NN: (0.89305, 0.94805), SVM: (0.85333, 0.98675),
Random Forest: (0.92453, 0.97403), Naïve Bayes: (0.93548, 0.93902). Ranking by unweighted
mean results in the same order as on the test set: 1. Random Forest: (0.94928), 2. Naïve

174 Chapter 6. Pattern Classifier for PAMONO

Bayes (0.93725), 3. k-NN (0.92055), 4. SVM (0.92004). On real data, the vote for the Random
Forest learner is clearer. On this basis, the following Design Decision 6.1 is taken.

Design Decision 6.1. The unweighted mean of Precision and Recall on real data is employed
as the decisive criterion in choosing a learning algorithm for the pattern classifier in Figure 6.1.
As the Random Forest learner performed best in this criterion, it is selected as the learning
algorithm to be used in the pattern classifier. All subsequent investigations in Chapters 6
and 7 are restricted to this learner, in order to avoid a combinatorial explosion of results to
report.

Note that in obtaining the results stated above, the optional feature selection module in
Figure 6.1 was disabled and all features were used because the reason to do feature selection
on F = 67 features is not classification performance, but to gain insight into which kinds of
features perform well, cf. Section 6.7.3. Normalization was carried out as discussed above,
in the context of the parameters to be optimized. Class balancing was enabled for the
reasons to be given in Section 6.7.2. In order to sort out a chicken-and-egg problem between
choosing Random Forest as the learner and choosing to do class balancing with respect to the
Random Forest learner results, all learners were also optimized with class balancing disabled.
This guards against the potential case of one of the other learners performing better that
Random Forest if balancing is disabled. Median (Precision, Recall) tuples on the real sensor
dataset in this case are: k-NN: (0.89933,0.96403), SVM: (0.88889,0.98071), Random Forest:
(0.91391,0.98214), Naïve Bayes: (0.92754,0.93902). The resulting ranking is: 1. Random
Forest (0.94803), 2. SVM (0.93480), 3. Naïve Bayes (0.93328), 4. k-NN (0.93168). The SVM
and k-NN learner benefit from disabling balancing, while Random Forest and Naïve Bayes
benefit from keeping it enabled. Regardless of balancing, Random Forest performs best, thus
the chicken-and-egg problem described above is resolved. The effects of class balancing are
discussed in more detail in Section 6.7.2.

Impact of Learner Choice on Runtime

The runtimes of executing the learning algorithms were tracked over the parameter optimiza-
tion via SynOpSis. Times are reported in seconds and are mean values over all individuals in
the optimizations of all 21 examined detector results. They were measured on the computer
described in System Specification 6.1, including the overhead operations listed after that
specification. For being lazy learning, k-NN training simply means storing the input dataset,
as discussed in Section 6.6.1. This makes k-NN an ideal candidate for estimating the offset
introduced by the constant-time overhead operations that are executed prior to the actual
learning process. Average runtime of the k-NN learner was 26.932 s. SVM training took
27.068 s, which is an increase by approximately 0.50500%. The Random Forest took an
average training time of 29.620 s and hence 9.9807% longer than k-NN. Training the Naïve
Bayes classifier took 27.068 s, averaging over all detector results, putting it on par with the
SVM.

Note that while these per-individual runtimes are very similar, the cumulated runtimes
over an optimization may differ: For the Naïve Bayes classifier, no parameters are optimized,
hence in sequential optimization it needs to be learned only once for learning the classifying
model. In k-NN only one integer parameter is optimized, such that exhaustive search over
its range of size 50 can be used. SVM and Random Forest have more parameters, justifying

6.7. Results 175

Off On
0.5

0.6

0.7

0.8

0.9

1

Precision

Recall

(a) Training
Off On

0.5

0.6

0.7

0.8

0.9

1

(b) Validation
Off On

0.5

0.6

0.7

0.8

0.9

1

(c) Test
Off On

0.5

0.6

0.7

0.8

0.9

1

(d) Real

Figure 6.4: Class Balancing off versus on. Precision and Recall as attained by optimized Random Forest
classifiers over 21 detector results are plotted. Each of the datasets in (a)–(d) was classified by
models learned from unbalanced inputs (“Off”) and from balanced inputs (“On”). The datasets
themselves were not balanced, i.e. the evaluation occurs with respect to their original distribution.
For the test (c) and real (d) datasets, balancing increases Precision at the cost of Recall.

Off On
0.5

0.6

0.7

0.8

0.9

1

Precision

Recall

(a) Training
Off On

0.5

0.6

0.7

0.8

0.9

1

(b) Validation
Off On

0.5

0.6

0.7

0.8

0.9

1

(c) Test
Off On

0.5

0.6

0.7

0.8

0.9

1

(d) Real

Figure 6.5: Class Balancing off versus on – Balanced Application Sets. Results for the same
experiment as in Figure 6.4 are shown, except for one modification: Here the datasets in (a)–(d)
were artificially balanced before measuring the attained Precision and Recall. In conjunction
with Figure 6.4, this experiment investigates how the performance of classifying models learned
from unbalanced and balanced inputs is affected by changes in class prevalence in the data to be
classified. A detailed analysis is given in the text.

their evolutionary optimization which requires executing the learning algorithm more often
as described in the GA settings in Section 7.3.2.

6.7.2 Balancing Class Prevalence

For the choice of the Random Forest learner (Design Decision 6.1), this investigation provides
more details on the effect of enabling and disabling the module for balancing class prevalence,
as presented in Section 6.3. In both cases, Random Forest parameters are optimized separately
via SynOpSis as stated in Section 6.7, and results over the same 21 detector results are
reported. ADASYN parameters (cf. Section 6.3.2) were constantly set to the following values:
The balance parameter b was set to 1, meaning that classes will be fully balanced. The

176 Chapter 6. Pattern Classifier for PAMONO

number Ks of nearest neighbors from which the SMOTE subroutine randomly draws an
interpolation target was set to 5. The number Ka of nearest neighbors examined by ADASYN
for determining whether a minority example is close to a class boundary was also set to 5.
Standardized Euclidean distance is used in both k-NN searches, thus implicitly handling
feature scale normalization during determination of neighborhoods.

Impact of Balancing Choice on Classification Quality

Figure 6.4 shows box plots of Precision and Recall as attained on training (a), validation
(b), test (c) and real sensor data (d). Within each plot, the results for turning the balancing
module off are contrasted with those for turning it on. Differences are negligible. On
the test set, enabling balancing increases median Precision from 0.99200 to 0.99331 while
median Recall decreases from 0.95873 to 0.95597. Similarly, on the real sensor data, enabling
balancing increases median Precision from 0.91391 to 0.92453 while median Recall decreases
from 0.98214 to 0.97403.

While like in Section 6.7.1, a decision for or against balancing could be taken by computing
an aggregate statistic of Precision and Recall, conducting a modified experiment provides
more insight into the effect of class balancing. The modified experiment can be derived
as follows: Using unbalanced input data emphasizes the majority class stronger than the
minority class in learning the classifying model [HG09]. This implicitly introduces the
assumption that class prevalence in the actual data to be classified will be similar or exhibit
even larger dominance of the majority class. If this assumption does not hold, i.e. if minority
class prevalence increases, compared to the data used in learning, a classifier learned from
unbalanced inputs is expected to perform worse. This effect is illustrated by modifying the
balancing experiment as follows: Like in Figure 6.4, Random Forest classifying models learned
from unbalanced and balanced inputs are compared, but this time the respective datasets
on which they are applied for measuring the attained Precision and Recall are synthetically
balanced3 using ADASYN.

Figure 6.5 displays the corresponding results obtained for applying the Random Forest
classifiers to datasets with synthetically balanced class prevalence. The differences between
classifiers trained with balancing disabled, compared to those with balancing enabled have
increased in comparison to Figure 6.4. On the test set, enabling balancing increases median
Precision from 0.92835 to 0.96743 while median Recall decreases from 0.95873 to 0.95597. On
the real sensor data, enabling balancing increases median Precision from 0.55597 to 0.58964
while median Recall decreases from 0.98214 to 0.97403. In both cases, the gain in Precision
is considerably larger than the loss in Recall. While this result provides the argument for
taking Design Decision 6.2, its discussion continues after that.

Design Decision 6.2. For PAMONO data analysis with SynOpSis, the class balancing
module is enabled in all further investigations because this alleviates the assumption that the
learned classifying model is applied solely to data with class prevalence similar to that observed
in the data it was learned from. Learning from balanced inputs allows for larger differences
of spatiotemporal nano-object density between the synthetic datasets used for learning and
the real input to be classified, for which this density is unknown. Hence, with class balancing
enabled, the Synthesis stage need not be informed about the expected nano-object prevalence

3This creates synthetic examples even in the real data.

6.7. Results 177

in the real data in order to generate corresponding synthetic data. Furthermore, the classifier
learned from balanced inputs is expected to better handle changes in nano-object concentration
over time: Such changes result in spatiotemporal density of target patterns increasing or
decreasing over time. The density of non-target patterns can not be expected to vary in the
same way over time. Hence, changes in nano-object concentration over time change class
balance over time, which is better handled if the classifying model is learned from balanced
input, as demonstrated by the results above. As a summary, by being learned from balanced
inputs, the resulting classifying model does not implicitly prefer one class over another.

Now, to continue the discussion of Figure 6.5, the observed results can provide more
insight into the effect of class balancing. Concerning this, it is important to note that only
four of the 21 detector results examined in this investigation exhibit a detector Precision
< 0.5, i.e. with the target class being the minority class. In all other 17 detector results,
examples from the non-target class are in the minority, i.e. class balancing synthetically adds
patterns from the non-target class. The following argument focuses on this more frequent
case: More non-target (negative) patterns introduce the possibility of incurring more False
Positives (FPs), in case they are incorrectly classified as target patterns. As a consequence,
classifier Precision is the measure that potentially suffers when a classifier is applied to
balanced instead of the original input data. This can be seen from comparing Figure 6.4
to Figure 6.5: While Recall remains nearly unchanged, Precision decreases considerably.
Now the next question is: In how far does class balancing alleviate this drop in Precision?
Figure 6.5 provides the corresponding evaluation: On the validation, test and real sensor
dataset, Precision benefits from conducting class balancing prior to learning the classifier.
This benefit is larger than in Figure 6.4, while the loss in Recall is comparable between both
experiments. Nevertheless, for artificially balanced real data, Precision of the Random Forest
learned from balanced inputs is still low. Note that ADASYN was used to artificially balance
the data to be classified. The conjecture is that the low Precision attained on such data is
related to the way ADASYN selects the input examples from which to create new synthetic
examples: It particularly identifies borderline examples and creates new examples from those.
Such examples are characterized by high proximity to the class boundaries and are thus the
hardest to classify. As they belong to the non-target class for 17 out of 21 experiments, a
severe degradation in median Precision occurs. This creation of worst-case examples can only
incompletely be compensated for by learning the classifier from balanced inputs.

Impact of Balancing Choice on Runtime

Runtimes, as measured in seconds on the computer described in System Specification 6.1,
were as follows: Without balancing, learning the Random Forest classifier took 25.841 s on
average. Enabling balancing increased this runtime to the average of 29.620 s reported in
Section 6.7.1. The relative increase is thus 14.624%. Note that this extra runtime is mostly
due to a larger training set undergoing cross-validation in SynOpSis optimization. ADASYN
itself is faster than the time difference above. The average time taken for ADASYN alone is
0.532 74 s. The smaller the size of the minority class in comparison to the majority class, the
larger the impact of class balancing on the runtime of the learning algorithm will be.

178 Chapter 6. Pattern Classifier for PAMONO

Table 6.1: Feature Usefulness. The frequencies with which features were selected over the 21 examined
detector results were counted and tabulated as measures of feature usefulness.

Features Selection Frequency
f spot

3.5 20
farea, f spot

0.7 ,f std
time 16

fblob
4.9 , f spot

5.6 , fL1AC
time 15

f circul, fdet
4.9 , f

spot
1.4 , f trace

3.5 , fCV
time, fPPA

time 14
fblob

3.5 , fblob
6.3 , f trace

1.4 , fRMS
time , f skew

time 13
fwidth

AABB, faxis1
OBB , f spot

2.8 , f trace
7.0 , faxis1

ori , f step
time 12

fblob
1.4 , fdet

2.1 , fdet
2.8 , f

spot
4.2 , f spot

4.9 , f rect 11
fperim, f spot

2.1 , f spot
7.0 , f trace

2.8 , f trace
5.6 , f trace

6.3 , f std
space, fmean

time 10
faspect

OBB , fmean
space , fC4 , fdet

0.7 , fdet
3.5 , fdet

4.2 , f trace
0.7 , f trace

2.1 , f trace
4.2 9

faxis2
OBB , fC2 , fblob

5.6 , fdet
5.6 , fdet

7.0 , f trace
4.9 8

fheight
AABB, f

compact, f elong, fblob
2.8 , fdet

1.4 , fdet
6.3 , f cross

time 7
fblob

2.1 , fblob
7.0 6

fblob
0.7 , farea

OBB, fkurt
time 5

f spot
6.3 , fmax

space 4
fblob

4.2 3

6.7.3 Feature Selection

The feature selection module in Figure 6.1 was realized as described in Section 6.5.2. The
GA was run with a population size of 20 individuals undergoing 20 generations of evolution.
Feature selections were encoded as binary vectors of length F , where F = 67 is the total
number of features to select from. On initialization, each feature is selected with probability
0.5. Elitism was enabled and tournament selection [Luk13] with tournament size 5 was applied.
A one-point crossover between the selected individuals was carried out. The probability of
mutating a gene was set to 1/F . No criterion for early termination was used, so the full set
of 400 individuals was always evaluated.

Feature Usefulness as Computed by Feature Selection

Table 6.1 presents the results of this feature selection strategy by listing feature names in the
order of decreasing selection frequency. Note that the top-ranked feature f spot

3.5 was selected
in 20 of the 21 examined detector results and that the second rank consists of three features
that were chosen in 16 cases, which sets the usefulness of f spot

3.5 apart from the rest. This
does however not imply that the f spot

σ features are all useful: They can also be found in the
middle and lower ranks. The same holds for all features of spatial intensities. Features of
spatiotemporal intensities are primarily found in the upper ranks, which is presumably related
to their integration of information from all three dimensions of the input data. Features of
polygon shape are represented over all ranks. A more detailed and more visual discussion of
feature usefulness follows in Section 6.7.4.

6.7. Results 179

Off On
0.5

0.6

0.7

0.8

0.9

1

Precision

Recall

(a) Training
Off On

0.5

0.6

0.7

0.8

0.9

1

(b) Validation
Off On

0.5

0.6

0.7

0.8

0.9

1

(c) Test
Off On

0.5

0.6

0.7

0.8

0.9

1

(d) Real

Figure 6.6: Feature Selection off versus on. The impact of the wrapped Naïve Bayes feature selection
described in Section 6.5.2 on Precision and Recall over the 21 detector results is shown. A
Random Forest learner on balanced inputs was used. Both, Precision and Recall are nearly
unaffected by feature selection.

Impact of Feature Selection Choice on Classification Quality

Figure 6.6 plots the impact of disabling respectively enabling the feature selection module in
Figure 6.1 on the attained Precision and Recall. This impact is generally small in terms of
median objective values, and on the test and real dataset there is no clear vote: Enabling
feature selection on the test dataset increases median Precision from 0.99331 to 0.99346,
while median Recall decreases from 0.95597 to 0.94969. On the real sensor input, enabling
feature selection decreases median Precision from 0.92453 to 0.91358, while Recall remains
unchanged at 0.97403. Given the low number of F = 67 features in total, feature selection was
carried out primarily to obtain the feature ranking in Table 6.1 and not to improve classifier
performance4. Hence, Design Decision 6.3 is taken as follows:

Design Decision 6.3. For PAMONO data analysis with SynOpSis, the feature selection
module is disabled in all further investigations because its purpose was primarily to obtain
an assessment of feature usefulness as summarized in Table 6.1. As expected due to the low
number of overall features, the impact of feature selection on classification quality is low.

Impact of Feature Selection Choice on Runtime

The feature selection scheme realized in SynOpSis is independent of the learning algorithm
and parameters used to compute the classifying model. Hence it needs to be executed only
once, on the training dataset. The average net runtime of this feature selection over all
21 examined detector results was 30.677 s, excluding the overhead operations listed below
System Specification 6.1.

6.7.4 Feature Extraction

Given the votes of feature selection as summarized in Table 6.1, this section provides a visual
insight into the most and least useful features as determined by that feature selection. Each
visualization consists of class-separated histograms of feature values as observed in training

4This was discussed in more detail at the beginning of Section 6.5.

180 Chapter 6. Pattern Classifier for PAMONO

2 4 6 8 10

Feature Value #10!3

0

50

100

150

F
re

q
u
en

cy

Target
Non-target

(a) f spot
3.5

0 500 1000 1500 2000

Feature Value

0

50

100

150

F
re

q
u
en

cy
(b) farea

0 0.02 0.04 0.06 0.08

Feature Value

0

10

20

30

40

50

F
re

q
u
en

cy

(c) f std
time

0 0.5 1

Feature Value #10!3

0

50

100

150

F
re

q
u
en

cy

(d) f spot
3.5

0 500 1000 1500

Feature Value

0

20

40

60

80

F
re

q
u
en

cy

(e) farea

0 2 4 6 8

Feature Value #10!3

0

10

20

30

F
re

q
u
en

cy

(f) f std
time

Figure 6.7: Feature Histograms – Top Ranks. Class-separated histograms of feature values are shown
for the three top-ranked features in Table 6.1. The first row (a)–(c) shows these histograms for
a detector result exhibiting good separation on the single feature level, while the second row
(d)–(f) does the same for a detector result with bad separation. Conclusions are given in the
text.

data before balancing was applied. Among the 21 detector results examined in Table 6.1,
two were selected for in-depth consideration in the following. They were selected because
one exhibits good per-feature class separation, while the other does not, i.e. there is a large
difference in per-feature class separation. For the well-separating detector result, the classifier
achieves both Precision and Recall 1, while for the badly-separating detector result, Precision
1 and Recall 0.99194 are attained. Each of the two datasets was classified by a Random
Forest classifier optimized via SynOpSis.

Figure 6.7 shows histograms of feature values as observed in three top-ranked features as
according to Table 6.1. Features observed in the well-separating detector result are shown in
the first row (a)–(c), while the same features as observed in the badly-separating detector
result are shown in the second row (d)–(f). Note that among these most frequently selected
features only f spot

3.5 on the well-separating detector result (a) can provide a good separation if
used in a single-feature classifier. The other features, as well as f spot

3.5 on the badly-separating
detector result, seem to be useful primarily in conjunction with further features, because on
the single-feature level there is strong class overlap.

Interestingly, class overlap is by far smaller for the least frequently selected features on
the well-separating detector result, as depicted in the first row of Figure 6.8. This suggests
that they were rated the worst features due correlation with other features already in the
selection and thus low usefulness for the classifier. On the badly-separating detector result in
the second row of Figure 6.8, their class separation worsens, as expected.

6.8. Remaining Parameters of the Classifier 181

2 4 6 8

Feature Value #10!3

0

50

100

150

F
re

q
u
en

cy

Target
Non-target

(a) f spot
6.3

0.95 1 1.05 1.1

Feature Value

0

50

100

150

F
re

q
u
en

cy

(b) fmax
space

0.01 0.015 0.02 0.025

Feature Value

0

20

40

60

80

100

F
re

q
u
en

cy

(c) fblob
4.2

0 2 4 6 8

Feature Value #10!4

0

50

100

150

F
re

q
u
en

cy

(d) f spot
6.3

0.1 0.15 0.2 0.25

Feature Value

0

10

20

30

40

F
re

q
u
en

cy

(e) fmax
space

0 0.005 0.01 0.015

Feature Value

0

10

20

30

40

50

F
re

q
u
en

cy

(f) fblob
4.2

Figure 6.8: Feature Histograms – Bottom Ranks. The same class-separated histograms of feature
values as in Figure 6.7 are shown, but the features depicted here are those ranked worst in
Table 6.1. The first row (a)–(c) is from the same well-separating detector result as the first
row of Figure 6.7, and the second row (d)–(f) is from the same badly-separating detector result.
Conclusions are given in the text.

Note that the distributions of feature values are approximately Gaussian in most cases.
Exceptions to this rule occur in features with a lower limit of zero and a heavy tendency for
this lower limit: It is presumed that possibly Gaussian distributions are compressed towards
this lower limit as a result of the generally low intensities and small scales in PAMONO data,
cf. Section 7.2. Approximate Gaussianity of the other features indicates suitability of the
zero-mean, unit-variance transformation used in feature scale normalization (cf. Section 6.4)
and of the Gaussian fits that were used to model the class-conditional distributions of feature
values in the Naïve Bayes classifier.

6.8 Remaining Parameters of the Classifier

In analogy to Table 5.6 in Section 5.7, which listed the parameters to be optimized for the
pattern detector, Table 6.2 lists the parameters remaining to be optimized for the pattern
classifier. Design Decisions 6.1 to 6.3 fixed the Random Forest learner to be used with prior
class balancing and without feature selection as the final choice for the evaluation of the
overall system in Chapter 7. Therefore, all parameters remaining to be optimized for the
pattern classifier are the Random Forest parameters described in Section 6.6.3. Table 6.2
lists these parameters along with the examined ranges, which are the same as used in the
results section of this chapter, cf. Section 6.7.1.

182 Chapter 6. Pattern Classifier for PAMONO

Table 6.2: Parameters Optimized for the Pattern Classifier after Random Forest was Selected
as the Learning Algorithm.

Name Type Range Brief Description
K int {1, . . . ,15} Number of features available for splitting
I int {1, . . . ,500} Number of trees in the forest
D int {0, . . . ,20} Maximum tree depth (0: no limit)

6.9 Conclusion

A pattern classifier was presented to eliminate spurious responses of the pattern detector
from Chapter 5. It uses features of polygon shape, spatial and spatiotemporal intensities in
order to distinguish target patterns from non-target patterns in the output of the detector.
This distinction is realized by a classifying model trained on synthetic ground truth data with
a supervised machine learning algorithm. Four eligible algorithms were presented along with
optional modules for data preprocessing in terms of class balancing, feature scale normalization
and feature selection. Benefits and drawbacks of preprocessing methods and learners were
evaluated and discussed, leading to Design Decisions 6.1 to 6.3 restricting the search space
to be examined in optimizing the pattern classifier. As a summary, the decisions are to use
the Random Forest learner with prior class balancing and without feature selection. Feature
scale normalization is not required by this learner. In this setup, the pattern classifier will be
used in the evaluation of the overall SynOpSis approach for analyzing PAMONO data. This
evaluation is the topic of Chapter 7.

Future Work

Future work with regard to the pattern classifier may examine an ensemble of classifying
models, each obtained as one non-dominated solution in optimizing the algorithmic parameters
of the employed learning algorithm. Using multiple non-dominated models means that the
entire Pareto front can be considered in the results, respecting all objectives that were deemed
important for optimization. Votes can be weighted with respect to model position in objective
space: For example a model with low Recall should have lower weight if it classifies an
example as negative because low Recall models incur a large number of False Negatives (FNs).
This can be regarded as a mixture-of-experts model [JJN+91] in objective space: Each model
is an expert for certain predictions, depending on its position in objective space. Clustering
can be used to decrease the redundancy and accelerate the application of such an ensemble:
The non-dominated solutions can be clustered either in parameter space or in objective space,
with the latter option allowing stronger statements about the coverage of the Pareto front.

Furthermore, an ensemble approach enables integration of classifying models produced
by different types of learners: As an example, SVM models can be combined with Random
Forest models. The SVM models attained higher median Recall than any other learner in
Figure 6.3 but suffered from low Precision. Combining both types of models may yield an
ensemble that performs well in both objectives.

Chapter 7

Evaluation of SynOpSis for
PAMONO

Contents
7.1 Introduction . 184

7.2 PAMONO Experiments . 184

7.2.1 PAMONO Sensor Setup and Variations 185
7.2.2 Description of PAMONO Experiments 186
7.2.3 Signal-to-Noise Ratios . 187

7.3 Setup of SynOpSis for PAMONO . 190

7.3.1 Objectives and Reported Measures . 191
7.3.2 Genetic Algorithm Settings . 193
7.3.3 Desirability Settings . 195
7.3.4 Model Selection and Performance Estimation Strategies 197
7.3.5 Computing Classifying Models . 199
7.3.6 Measurement System . 200

7.4 Illustrated Results of a Single Optimization and Analysis 200

7.5 Optimization Options and Final Analysis Results 204

7.5.1 Results Over Datasets . 206
7.5.2 Results Over Optimization Modes . 207
7.5.3 Results Over Desirability Modes . 209
7.5.4 Choice of Optimization and Desirability Mode 210
7.5.5 Final Analysis Results Over Experiments 212
7.5.6 Quality of Performance Estimates . 217
7.5.7 Specificity of Final Analysis Results . 219
7.5.8 Computation Time . 220

7.6 Parameter Choices of the Optimization Stage 223

7.6.1 Examining Pareto Fronts in Parameter Space 223
7.6.2 Modeling Parameter Set Quality in Objective Space 229

7.7 Cross-Experiment Generalization Performance 233

True Positive (TP)

183

184 Chapter 7. Evaluation of SynOpSis for PAMONO

7.1 Introduction

Chapters 4 to 6 described a concrete realization of the SynOpSis approach that was introduced
abstractly in Chapter 3. The application case of this concrete realization is automatic analysis
of the time series of images produced by the PAMONO sensor presented in Chapter 2,
which can be used e.g. for real-time-capable detection of biological viruses in liquid samples.
Evaluations given in the previous chapters were restricted to finalizing design choices that
are not subject to the Optimization stage. An evaluation and validation of SynOpSis for
PAMONO as a whole was postponed up to now, i.e. until all its constituents had been
presented. This evaluation and validation is the subject of this chapter, examining all parts of
SynOpSis in interplay, and reporting the results finally attained in PAMONO data analysis.

Before these evaluations are presented, the experimental settings on both, the physical
and the algorithmic side are depicted: Section 7.2 is concerned with the physical setup of the
PAMONO sensor. Variations of this setup provide the experimental data used as the basis of
this evaluation. Hence these variations are described along a characterization of the resulting
data. Section 7.3 delineates the experimental setup of SynOpSis, including a determination
of the degrees of freedom that were left open up to now. Furthermore, quality measures and
different modes of applying SynOpSis are discussed, which are examined in the evaluation.

Sections 7.4 to 7.7 then report the results of applying SynOpSis for PAMONO data analysis.
As a starting point, Section 7.4 illustrates SynOpSis for a single experiment, displaying the
convergence of objectives during optimization, the resulting Pareto front and the detector
and classifier confusion matrix as attained by applying the results to the real sensor data.
After this single example gave an illustration of the type of results, Section 7.5 delivers cross-
validated, aggregate results for all experiments, hence examining SynOpSis on a larger scale.
In this context, a decision between sequential and two types of global optimization is taken,
as well as a decision among three different ways of applying the desirability approach during
optimization. With these decisions fixed, the final analysis results for all examined PAMONO
experiments are presented, followed by an assessment of the quality of performance estimates.
Specificity of results is evaluated by analyzing data not containing any nano-objects, and
finally, the computational effort of optimization and analysis is examined. In this context, the
real-time capability of PAMONO data analysis with SynOpSis is verified. Section 7.6 identifies
algorithm choices and parameter values that occur frequently on Pareto fronts. Thus, this
section takes a closer look at what makes a good parameter set for the detector and classifier.
Furthermore, a regression model predicting objective function values from parameter sets
is computed, and the predictability of objective values is investigated in consideration of a
potential meta-modeling-based enhancement of the Optimization stage. Finally, Section 7.7
assesses how well parameter sets and classifying models generalize across different PAMONO
experiments.

7.2 PAMONO Experiments

SynOpSis analysis results were validated with respect to several PAMONO experiments, made
under varying physical conditions. Section 7.2.1 details these physical parameterizations of
the PAMONO sensor and their variations. Varying the physical parameters resulted in six
different PAMONO experiments to be presented in Section 7.2.2. These experiments serve as
the basis used throughout this evaluation to demonstrate the capabilities of SynOpSis. In

7.2. PAMONO Experiments 185

particular, these experiments target the capability of finding suitable algorithmic parameters
for PAMONO data analysis in face of varying physical parameters of the sensor. In order to
quantify the respective difficulty level of analyzing the data from each experiment, Section 7.2.3
measures the observed Signal-to-Noise Ratios (SNRs).

7.2.1 PAMONO Sensor Setup and Variations

In Chapter 2, the general experimental setup of the PAMONO sensor is explained. This
setup, depicted in Figure 2.2, has many parameters, which are in the following referred to
as physical parameters because they are determined in the physical world, before any data
is processed. In contrast to that, the parameters optimized by SynOpSis are called the
algorithmic parameters, as was done before. The concrete choice of the physical parameters
of the sensor was left open in Chapter 2 because such a choice describes one particular sensor
setup and not a general method. The concrete physical parameterizations [STM+15] of the
PAMONO sensor given now determine the degrees of freedom remaining from Chapter 2. For
the experiments analyzed in this evaluation, different combinations of the following physical
parameters were chosen, as will be summarized in the caption of Table 7.1. All components
described here can be found in Figure 2.2, and the order of presentation in this list follows
the path of the light rays in that figure.

• Diode (Light Source):
As the light source a superluminescent diode (QPhotonics QSDM-680-9) was used,
which emits light at a wavelength of 680 nm. Brightness of the light source varies across
experiments and was in each case adjusted to closely reach the full well capacity of the
respective Charge-Coupled Device (CCD) camera in the brightest observed pixel. This
aims at fully utilizing the intensity resolution (range of measurable values) of the CCD.

• Gold Sensor Surface:
Gold layers may exhibit differences in quality, as discussed in more detail in the context
of optimizing Surface Plasmon Resonance (SPR) measurement conditions in [ZSS+17].
Within the scope of this thesis, the different physical parameters impacting gold layer
quality are summarized in a single rank order comprised of three levels: low, medium
and high quality, abbreviated as LQ, MQ and HQ respectively. These quality levels
are indicated in the ‘Name’-column of Table 7.1. With all other physical parameters
unchanged, lower quality of a gold layer results in decreased SNR in the recorded data,
cf. also Section 7.2.3. Different gold layers typically vary in terms of production quality,
even if they underwent the same manufacturing process. As gold layers wear out after
approximately ten positive measurements, such variations are common in practice.

• Nano-Objects:
The nano-objects were either 100 nm or 200 nm polystyrene particles as also indicated
in the ‘Name’-column of Table 7.1. Polystyrene particles were used as a safe proxy for
actual biological viruses and as a more economic alternative to Virus-Like Particles
(VLPs) [GA06]. The observed indirect effect caused by a nano-object in PAMONO is
determined by its size [ZKG+10], not by its type.

• Coating of the Sensor Surface:
The sensor surface needed no coating with antibodies because polystyrene particles can
be bound to the surface by means of electrostatic charge.

186 Chapter 7. Evaluation of SynOpSis for PAMONO

• Buffer Solution:
The nano-objects were diluted in either a Phosphate Buffered Saline (PBS) plus 0.3%
Sodium Chloride (NaCl) buffer solution, or in water (H2O) plus 0.25% NaCl as indicated
in the caption of Table 7.1.

• Lens:
The employed lens was a Minolta MD Rokkor with f = 50 mm and aperture 1/1.7.

• CCD Camera:
The images of the sensor surface were recorded using 12 bit grayscale industrial strength
CCD cameras. Two such cameras were examined: The Allied Vision Prosilica GC
2450 (2448 px × 2050 px) and the Allied Vision Guppy PRO F-503B (2588 px × 1940 px).
They were run at recording rates ranging from 15 to 40 Frames per Second (FPS), while
images were cropped to the Region of Interest (ROI) on the sensor, i.e. to the part
where the gold sensor surface is in focus. Cropping leads to different resolutions across
experiments. All variable camera parameters are listed in Table 7.1, and the respective
employed camera type is indicated in its caption.

7.2.2 Description of PAMONO Experiments

Variation in physical parameters is very common in developing prototypes of new sensor
technology. Several degrees of freedom in the experimental setup of the PAMONO sensor
were determined above, while others, like combinations of gold layer quality, nano-object
size and camera were left open. The experiments described in the following serve to assess
how well SynOpSis can adapt to variations in these and other physical sensor parameters.
The purpose of these variations is twofold: Firstly, an overall validation of SynOpSis analysis
results under varying conditions is to be conducted, and secondly, the limits of the method
are to be identified, particularly with respect to gold layer quality and nano-object size.

Table 7.1 lists the six experiments examined throughout this evaluation, along with their
respective properties and combinations of physical parameters. All details are provided
either in the table itself or in its caption, in order to centralize them in a single place that is
convenient to reference throughout the remainder of this chapter. To avoid redundancy, the
details are not repeated here, and the reader is referred to the table instead.

The different experiments listed in Table 7.1 refer to real data recorded from the sensor.
Consequently, no synthetic ground truth is available, but instead, ground truth was created
manually by human experts: Any actual nano-object appearing in the data was delineated
by a polygon, using the same procedure as for the archetypes measurement in Section 4.3.1.
Therefore, the output format of these expert segmentations is the same as that of the synthetic
ground truth, and the same method for matching and labeling can be applied in evaluating
SynOpSis results quality, cf. Section 5.8. Ground truth for real data was used solely in
assessing analysis quality. It was neither used in optimization, nor model selection, nor
performance estimation.

In addition to the real sensor data with nano-objects listed in Table 7.1, real sensor data
without nano-objects was recorded prior to the inserting the specimen into the flow cell. This
data will be used in the specificity analysis in Section 7.5.7. Besides these two real datasets,
three synthetic datasets were created for each experiment: These datasets are called training,
validation and test set, and their roles and purposes are presented in detail in Section 7.3.4.
Each such triplet of synthetic datasets was created the same way, following Chapter 4.

7.2. PAMONO Experiments 187

Table 7.1: PAMONO Experiments. The PAMONO experiments that provided the examined real sensor
data are listed in this table. In all cases, polystyrene nano-objects of the sizes indicated in the
‘Name’-column were to be detected. The suffixes after nano-object sizes indicate gold layer quality
in terms of a rank order: LQ, MQ and HQ are for low, medium and high quality, respectively. Gold
layer quality primarily affects Signal-to-Noise Ratio (SNR), and the rank order simplifies measures
of gold layer quality discussed in more detail in [ZSS+17]. All experiments were performed using
an Allied Vision Prosilica GC 2450 camera to record nano-objects in a PBS plus 0.3% NaCl buffer
solution. An exception is the 200 nm Gpy experiment, which used an Allied Vision Guppy PRO
F-503B camera (hence the suffix ‘Gpy’) and an H2O plus 0.25% NaCl buffer solution. Column
‘G’ displays the number of ground truth nano-objects in the data, as determined by a human
expert. The next column contains the size of the spatiotemporal volume to be analyzed: Its
first two values are the size of the recorded Region of Interest (ROI), i.e. the focus region of the
sensor. Its third value is the number of images, which were recorded at the rate indicated by the
‘FPS’-column, where FPS means Frames per Second. Finally, the last three columns display the
minimum, median and maximum SNRs observed in each experiment, cf. Section 7.2.3.

Name G Volume Size (px3) FPS SNRmin SNRmed SNRmax

200 nm HQ 352 1080 × 145 × 2000 20 1.75363 2.20402 3.20017
200 nm MQ 333 742 × 127 × 2000 20 1.37127 2.50311 5.10115
200 nm LQ 93 706 × 167 × 2000 20 1.22561 2.12493 4.34309
200 nm Gpy 195 1024 × 270 × 500 15 2.04267 3.73221 6.69059
100 nm HQ 195 750 × 230 × 4100 40 0.92184 1.82544 5.16014
100 nm LQ 56 450 × 170 × 4000 40 0.82224 1.24673 5.09924

Downloading PAMONO Experiments

In the spirit of reproducible research, five of the six PAMONO experiments listed in Table 7.1
were made publicly available on the internet. This includes real sensor data with and without
nano-objects, as well as synthetic data with ground truth. The Digital Object Identifiers
(DOIs) for the individual experiments can be found in the bibliography under the following
references: 200 nm HQ [SZS+14c], 200 nm MQ [SZS+14e], 200 nm LQ [SZS+14d], 100 nm HQ
[SZS+14b], 100 nm LQ [SZS+14a]. Note that by the time this thesis was written, experiment
200 nm Gpy was not available on the internet.

7.2.3 Signal-to-Noise Ratios

The Signal-to-Noise Ratio (SNR) is a frequently used measure in quantifying the quality
of data in signal processing tasks [CWG01; SLN+09; JZK+07; TRS+02; FM06; SHM+12;
MBW+12]. The SNR of a PAMONO time series is defined in agreement with [CWG01] as

SNR = (µS − µB)
σS

, (7.1)

the constituents of which are illustrated e.g. in Figure 7.1a: For a given single time series
with step1 time t, µS is the mean time series value after time t, and µB analogously before
time t. Subscripts are for step and base level. The difference (µS − µB) in the numerator
estimates the magnitude of the step signal. The denominator σS, i.e. the standard deviation

1SNRs were measured on the raw time series data as provided by the CCD camera, therefore nano-object
adhesions manifest as step-like functions in the time domain, as illustrated in Figure 2.2.

188 Chapter 7. Evaluation of SynOpSis for PAMONO

Minimum SNR = 1.75363

Time Series
µB

µS

σS

Median SNR = 2.20402 Maximum SNR = 3.20017

(a) 200 nm HQ

Minimum SNR = 1.37127 Median SNR = 2.50311 Maximum SNR = 5.10115

(b) 200 nm MQ

Minimum SNR = 1.22561 Median SNR = 2.12493 Maximum SNR = 4.34309

(c) 200 nm LQ

Minimum SNR = 2.04267 Median SNR = 3.73221 Maximum SNR = 6.69059

(d) 200 nm Gpy

Figure 7.1: Signal-to-Noise Ratios in Experiments with 200 nm Nano-Objects. Minimum, median
and maximum SNRs of the 200 nm PAMONO experiments listed in Table 7.1 are illustrated
by plotting the respective raw time series and the terms constituting the SNRs, as defined by
Equation (7.1).

7.2. PAMONO Experiments 189

Minimum SNR = 0.92184

Time Series
µB

µS

σS

Median SNR = 1.82544 Maximum SNR = 5.16014

(a) 100 nm HQ

Minimum SNR = 0.82224 Median SNR = 1.24673 Maximum SNR = 5.09924

(b) 100 nm LQ

Figure 7.2: Signal-to-Noise Ratios in Experiments with 100 nm Nano-Objects. Minimum, median
and maximum SNRs of the 100 nm PAMONO experiments listed in Table 7.1 are illustrated
by plotting the respective raw time series and the terms constituting the SNRs, as defined by
Equation (7.1).

of the values averaged in µS, estimates the magnitude of the noise, making Equation (7.1)
a Signal-to-Noise Ratio. The lengths of the regarded temporal windows were 200 frames
each for µS, σS and µB, respectively. Note that ±30 frames centered about t were ignored in
computing the SNR, in order to make it robust against the exact temporal coordinate of the
step. This can be seen as a small gap between the two horizontal lines in Figures 7.1 and 7.2.

Given this definition of the SNR of a single time series, the notion of SNR is extended to
single nano-objects and to entire PAMONO experiments as follows: For a single nano-object,
defined as a spatial region at a step time t, the SNR is defined as the maximum value
attained by Equation (7.1) over that region. With SNRs for the individual nano-objects in
an experiment defined, the SNR of that experiment itself is characterized by the minimum,
median and maximum SNRs observed over the nano-objects. These are the values reported in
the corresponding columns in Table 7.1. Note that computing these values in practice assumes
availability of ground truth information because regions and step times of the nano-objects
appearing on the sensor are required. To this end, the manually created ground truth also
used in assessing overall analysis quality on real sensor data can be used.

Figures 7.1 and 7.2 give an impression of the minimum, median and maximum SNRs
as observed in each of the six PAMONO experiments listed in Table 7.1. Each individual
figure plots the respective time series, along with the values of µS, µB and σS. Note that
some minimum SNRs in the 200 nm experiments are close to one, while those in the 100 nm
experiments are even below one. Visually distinguishing these steps from pure noise on the
level of regarding individual time series is a demanding task. Manual ground truth creation
in these cases can only take place after denoising and by considering multiple spatially

190 Chapter 7. Evaluation of SynOpSis for PAMONO

adjacent time series simultaneously. The SNR measurements, however, i.e. the evaluations of
Equation (7.1), were all carried out on the raw data as provided by the CCD camera.

Note that the maximum SNRs of the 100 nm experiments shown in Figure 7.2 are large in
comparison to the median and minimum SNRs. Examining the steps more closely reveals what
causes these large SNRs: Two nano-objects attach in high spatial and temporal proximity.
The first nano-object attachment causes a step about half the height of the final step. A
short noisy “plateau” follows, from which a second step related to the second nano-object
commences, which takes the overall step to its final height, resulting in the high SNR. Visual
inspection of the processed images in the spatial and temporal domain confirmed the presence
of two partially overlapping nano-objects.

Conclusion

A notion of a Signal-to-Noise Ratio (SNR) was defined for PAMONO time series, nano-
objects and experiments. SNRs of the six examined PAMONO experiments were determined
(Table 7.1), providing a quantitative measure of the difficulty of the respective analysis tasks.

Considering minimum and median SNRs, the difficulty of these analysis tasks in several
cases exceeds that of tasks solved in the literature: All algorithms surveyed in [CWG01] fail
for SNRs approaching four, while [SLN+09] report some methods that can handle SNRs
as low as two2. One of the goals of the evaluations given in this chapter is to show that
by optimized combination of denoising methods in two spatial and one temporal dimension,
SynOpSis can find nano-objects in PAMONO data with a median SNR close to one, i.e. at
least half of the occurring nano-objects are likely to be missed by the best algorithms surveyed
in [CWG01] and [SLN+09].

7.3 Setup of SynOpSis for PAMONO

While Section 7.2 determined the remaining degrees of freedom in the physical parameters of
the PAMONO sensor and presented the experimental data to be used in this evaluation, this
section will determine the remaining degrees of freedom in the setup of SynOpSis and present
the hardware upon which it is run.

SynOpSis is employed to find optimized values for the 28 parameters of the detector, as
listed in Section 5.7 and for the three parameters of the Random Forest classifier, as listed
in Section 6.8. Section 7.3.1 briefly summarizes the objectives with respect to which the
parameters are optimized and introduces two further measures used in reporting results.
Section 7.3.2 presents the configuration of the Genetic Algorithm (GA) along with two
examined modes for global and one mode for sequential optimization. Section 7.3.3 gives the
concrete parameterizations of the employed desirability functions and discusses three modes of
using these functions during optimization. Section 7.3.4 presents the concrete cross-validation
strategy used for model selection and performance estimation, while Section 7.3.5 describes
how the final classifying model is learned. Finally, Section 7.3.6 lists the hardware of the
computer used for all measurements in this chapter.

2Note that PAMONO data has two spatial and one temporal dimension while the studies in [CWG01;
SLN+09] relate to images with two spatial dimensions only. As a consequence, those studies measure SNR
with respect to the two spatial dimensions. Table 7.1, on the other hand, lists SNRs measured with respect to
the temporal dimension because the presented detector (Chapter 5) is based on time series classification.

7.3. Setup of SynOpSis for PAMONO 191

7.3.1 Objectives and Reported Measures

The measures used as objective functions in optimizing the detector and classifier parameters
have been presented in detail in Sections 3.5.2 and 3.6.2. Now the purpose of the following
itemization is to briefly list these objectives in one place for reference, while assigning unique
names to them which are used throughout this chapter. Furthermore, Terminology 3.1 is
concretized towards the PAMONO context:

Terminology 7.1. In the context of PAMONO data analysis, the terms pattern, target
pattern and non-target pattern from Terminology 3.1 are used synonymously with their
concrete PAMONO instances: Target patterns are the actual nano-objects to be detected in
PAMONO data, while non-target patterns are the spurious detector responses not related to
actual nano-objects, but to artifacts. The superordinate abstract term of patterns refers to
the union of all detector responses, i.e. to the union of nano-objects and artifacts. Hence it is
synonymously denoted as the set of candidate objects because each pattern is a candidate for
being related to an actual nano-object.

This terminology is used interchangeably with its more abstract variant, depending on
the context. In stating the objectives to be optimized for PAMONO in the following, the
concrete terminology is used.

Measures Used as Objectives in Optimization

RecallD
Detector Recall, as defined in Equation (3.3), is denoted as RecallD in the following.
It measures the ratio of nano-objects that have been found by the detector, among
all nano-objects in the data. Note that RecallD is defined with respect to the number
T̂P of detector responses cleansed from multiple detections. This prevents rewarding
repeated detections in optimizing this objective, as discussed in Section 3.5.2.

M-Rate
Detector M-Rate, as defined in Equation (3.2), is to be minimized. It penalizes multiple
detection of the same nano-object.

PrecisionC

Classifier Precision, as defined in Equation (3.5), is denoted as PrecisionC in the
following. It measures the ratio of actual nano-objects that have been classified as
nano-objects, among all detector responses that have been classified as nano-objects.

RecallC
Classifier Recall, as defined in Equation (3.4), is denoted as RecallC in the following.
It measures the ratio of actual nano-objects that have been classified as nano-objects,
among the subset of all actual nano-object responses provided by the detector. This
means in particular, that nano-objects missed by the detector do not influence RecallC.

Reported Measures

Besides the objectives listed above, two further measures of analysis quality are reported in
the evaluations in this chapter. These measures are not subject to optimization but merely
serve informative purposes. This should be kept in mind when interpreting the reported
results.

192 Chapter 7. Evaluation of SynOpSis for PAMONO

PrecisionD

This quantity measures Precision (cf. Appendix A) attained by the detector. Unlike
RecallD, PrecisionD is not defined with respect to the number T̂P of TP detector
responses cleansed from repeated detections:

PrecisionD = TP
TP + FP

. (7.2)

Instead, TP is the raw number of true positive detector responses, and FP is its number
of false positives, as shown in the confusion matrix of the detector in Table 3.1. The
reason for using TP instead of T̂P in Equation (7.2) is that PrecisionD serves as a
measure of class balance for the subsequent classifier: It is defined as the ratio of
actual nano-objects (TP detector responses) among all candidate objects passed to the
classifier (TP + FP detector responses). Therefore, PrecisionD directly reports class
balance. A low value of PrecisionD does not imply low quality analysis results, as long
as the objective PrecisionC of the classifier is large enough to sort out the FPs of the
detector. A value of PrecisionD = 0.5 means that the input for the classifier is perfectly
class-balanced, while PrecisionD = 1 means that the ideal classifying model is the trivial
model that classifies all candidate objects as positives. In this case the detector did not
respond to any spurious artifact.

D-Rate
While PrecisionD provides information on how important a good classifying model is
for a good analysis, D-Rate is a measure of overall analysis quality. It quantifies the
relative deviation of the number of reported nano-objects from the actual number of
nano-objects and is defined as

D-Rate = −1 + TP + FP
G

, (7.3)

where TP and FP refer to the confusion matrix of the classifier in Table 3.2. Hence
the sum in the numerator is the number of detector responses finally reported by the
classifier as being related to nano-objects. The denominator G is the number of actual
ground truth nano-objects. Therefore D-Rate measures the relative deviation between
the number of reported nano-objects and their actual number G. Positive values of
D-Rate indicate that the number of target patterns was overestimated, whereas negative
values indicate underestimation. A value of 0 means that the number was estimated
exactly.

Note that while D-Rate is an intuitive measure to report as a summary of overall analysis
quality, it is not a good objective to be optimized: An argument for this can be seen, if the
number of ground truth patterns G is decomposed as follows:

G = TP + FN −R +U,

where TP and FN refer to entries of the classifier confusion matrix in Table 3.2. R is the
number of repeated responses of the detector to single nano-objects, i.e. the number of surplus
responses to actual nano-objects. U is the number of undetected nano-objects in the ground
truth and is thus equivalent to the FN entry of the detector confusion matrix in Table 3.1.
With G decomposed, Equation (7.3) becomes

D-Rate = −1 + TP + FP
TP + FN −R +U , (7.4)

7.3. Setup of SynOpSis for PAMONO 193

from which it can be immediately seen, why D-Rate is not suitable as an objective function
to be optimized: Optimizing it means minimizing its absolute value, aiming at zero deviation.
Zero absolute D-Rate is attained for any case where numerator and denominator in the
previous equation have the same values, i.e. if FP equals FN −R + U . Optimizing D-Rate
as a single objective neither rewards large values of classifier TPs, nor does it penalize the
adverse components in Equation (7.4). Instead, it aims at a certain ratio between them. In
contrast to that, the optimized objectives do all this. Hence, optimizing for these objectives
and merely assessing deviation in terms of D-Rate yields an intuitive summary measure of
analysis results quality.

Early Cancellation

As a means for accelerating objective function evaluations during optimization, an early
cancellation mechanism is used: In case the number of detector responses is a times larger
than the number G of ground truth nano-objects, processing is canceled, and objectives are
assigned worst-case dummy values indicating this condition to the GA. Hence over-sensitive
parameters, that indiscriminately respond to everything, are precluded and the time taken
for matching these responses to the ground truth is saved. A value of a = 5 was chosen
empirically.

7.3.2 Genetic Algorithm Settings

Section 3.7 introduced the methodological prerequisites and terminology required for conduct-
ing optimization via Multi-Objective Genetic Algorithms (MOGAs). While MOGAs are very
general metaheuristics, they allow for some adaptation towards different application scenarios
by means of parameters to be configured. The following list summarizes the particular MOGA
settings used by SynOpSis for optimizing the objectives in Section 7.3.1:

• The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [DPA+02], as
presented in Section 3.7.5, was chosen as the concrete MOGA to be employed.

• The population size and the number of generations were chosen as follows: In
global optimizations, populations of size 50 were optimized over 50 generations. In
sequential optimizations, these numbers were the same with regard to optimizing
detector parameters, and for the subsequent optimization of classifier parameters,
population size and generation count were both set to 20. In all cases, the size of the
external NSGA-II elite was equal to the respective population size.

• Initialization of the population was conducted by drawing each parameter uniformly
at random from the set of its valid values.

• The tournament selection scheme was used with tournament size two, both of which
are the most common choices in GAs [Luk13] and for NSGA-II [DPA+02].

• Chromosomes are recombined via non-empty one-point crossover. As a preparation
for this, the parameter vector is mapped unto the chromosome such that parameters be-
longing to the same processing element are placed in adjacent genes on the chromosome,
i.e. high linkage exists particularly between adjacent genes. One-point crossover has a
higher probability of breaking genes (and thus parameters) apart that reside further
apart on the chromosome, compared to those residing more closely. Encoding highly

194 Chapter 7. Evaluation of SynOpSis for PAMONO

linked parameters in genes residing in close proximity on the chromosome makes the
one-point crossover operator a suitable choice.

• Mutation of a gene takes place with probability 0.1, and the mutation operator assigns
a new value by drawing uniformly from the set of values that parameter may assume.

With the MOGA configured as described above, three variants of the Optimization stage
of SynOpSis are evaluated in this chapter, as presented now.

Global Optimization with Four Objectives

This variant means that all four objectives listed in Section 7.3.1 are optimized simultaneously.
Hence the detector and classifier are optimized in conjunction, as detailed in Section 3.7.6.

Global Optimization with Three Objectives

This is a variation of the previous four-objective setup for global optimization. The rationale
behind reducing the number of objectives is related to choosing NSGA-II for the Optimization
stage: Even though in their original paper [DPA+02], Deb et al. applied NSGA-II on a
problem with five objectives and seven constraints, Jain and Deb later stated that optimizing
more than three3 objectives may leave the domain of application where NSGA-II is effective
[JD13].

Therefore, a global optimization with three objectives is conducted, leading to a territory
in which NSGA-II is known to work well. The number of objectives is reduced by optimizing
the product

RecallΠ = RecallD ⋅RecallC, (7.5)

instead of optimizing RecallD of the detector and RecallC of the classifier as separate objectives.
The rationale behind optimizing this product objective is that for overall results quality
assessment it does not matter, whether missed nano-objects are missed by the detector or
by the classifier. During optimization however, this coupling of objectives can have adverse
effects because it makes individuals with different RecallD and RecallC but equal RecallΠ
indistinguishable in objective space.

Sequential Optimizations with Two Times Two Objectives

As detailed in Section 3.7.6, a sequential optimization of the detector, followed by optimizing
the classifier can be conducted to find out, whether dividing global optimization into two
separate optimizations with two objectives each, reduces the quality of the attained results.
Comparing global to sequential optimizations serves to determine whether being able to
devalue detector parameters that produce patterns that are hard to classify, as is possible in

3Multi-objective optimization with more than three objectives is denoted as many-objective optimization
[JD13]. In 2013, Jain and Deb proposed NSGA-III for many-objective optimization, which was demonstrated
to work well on problems with up to 15 objectives [JD13]. However, NSGA-III has issues in dealing with
less than three objectives, which gave rise to its follow-up U-NSGA-III [SD15] (cf. [SD14] for a more detailed
version) as a unified approach to single-, multi- and many-objective optimization. These techniques have
not been considered in this thesis due to the lack of reference implementations. The overhead of producing
one was deemed unjustified in the context of this thesis, given the quality of results achieved with NSGA-II
[DPA+02] for global optimization, cf. particularly Section 7.5.

7.3. Setup of SynOpSis for PAMONO 195

0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

δ
(y
)

n = 1.1, l = 0.7, u = 1.3

(a) RecallD, RecallΠ

0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

δ
(y
)

n = 7, l = −0.2, u = 0.2

(b) M-Rate

0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

δ
(y
)

n = 4, l = 0.8, u = 1.2

(c) PrecisionC, RecallC

Figure 7.3: Desirability Functions (DFs) Used in PAMONO Data Analysis. The DF used for
RecallD and RecallΠ (a) does not saturate and is non-zero even for low objective values. In
contrast to that, the DFs for M-Rate (b), respectively PrecisionC and RecallC (c) do saturate
around their target values and assign desirability ≈ 0 in case objective values are too far away
from the targets. DF coefficients are provided above the plots, while the heuristics behind their
choice is explained in the text.

global optimization, has a positive influence on results quality in practice. This feedback is
not possible in sequential optimization because the detector is optimized separately, and the
classifier must learn from whatever patterns the optimized detector parameters produce.

In order to refer to these three variants of executing the Optimization stage, the following
abbreviations are introduced:

Terminology 7.2. The different optimization modes presented above will in the following
text and plots be denoted as Global 4, Global 3 and Sequential, respectively.

7.3.3 Desirability Settings

Section 3.8 presented the desirability approach to formalize expert preferences. The desirability
approach enables automatic selection of the single “best” (in terms of desirability) individual
from a Pareto front after optimization, and it can furthermore be used to narrow the search
region to the relevant parts of the Pareto front during optimization. Section 3.8 provides the
methodological background and will now be complemented with the concrete desirability
settings chosen for the PAMONO objectives listed in Section 7.3.1.

Harrington’s two-sided Desirability Function (DF) [Har65; TW06] as defined in Equa-
tion (3.7) was used for all objectives. A single DF of this type exhibits three parameters
n, l, u, encoding expert preferences for the associated objective. Figure 7.3 provides the values
of these parameters for all objectives, along with plots of the resulting DFs. The kurtosis
parameter n controls the peakedness of the DF, with higher values of n making constraint
satisfiability softer around the target value, cf. Section 3.8 for details. Parameters l and u are
the lower and upper specification limit, respectively. Since all objectives in Figure 7.3 are
one-sided4, only one of these parameters is shown as a dashed vertical line, while the other

4With all objectives being one-sided, the two-sided DFs were chosen not for their two-sidedness but for
their convenient control of peakedness in terms of the kurtosis parameter n, which the one-sided Harrington
DFs do not offer, cf. Section 3.8.

196 Chapter 7. Evaluation of SynOpSis for PAMONO

one resides on the irrelevant side and was chosen symmetrically to center the peak of the DF
upon the target value u+l

2 of the objective. Concrete choices of the coefficients n, l, u (top
part of Figure 7.3) for all objectives adhere to the following heuristics:

RecallD, RecallΠ (Figure 7.3a)
As can be seen from the plot, the DF of RecallD (and RecallΠ) does not saturate, thus
favoring a highly sensitive oversegmentation in the detector. Choosing a small n results
in increasing slope, instead of a decreasing one as would be the case in saturation. If
regarded as a constraint, this DF is a constraint that is never fully satisfied, except if the
underlying objective exactly attains the target value of one. However, it is also never
completely violated, i.e. even very small values in the underlying objective result in a
non-zero value in the DF, which serves to guide optimization into the correct direction:
Detector parameters capable of attaining even low non-zero RecallD should be treated
differently from those with zero RecallD, otherwise optimizing DFs would have no sense
of search direction in case of low RecallD. As high values in RecallC are obtained more
easily than in RecallD, the latter is regarded as the bottleneck in optimizing RecallΠ,
which is why the same DF is chosen for RecallD and RecallΠ.

M-Rate (Figure 7.3b)
M-Rate on the other hand can be regarded as a constraint that is both violable and
satisfiable: Coefficient values are chosen such that for an M-Rate above 0.25, the DF
becomes ≈ 0, and for M-Rate below 0.10 it becomes ≈ 1.

PrecisionC and RecallC (Figure 7.3c)
DFs of PrecisionC and RecallC were chosen equal because both objectives are deemed
equally important. Encoding this in terms of two identical DFs instead of e.g. optimizing
the arithmetic mean of these objectives bears the advantage that it specifies more exactly,
which part of the Pareto front is to be searched: If the geometric mean Desirability
Index (DI) from Equation (3.8) is chosen as a single objective, this tells the optimizer
that a low desirability in one objective can not be compensated for by a high value in
the other. The geometric mean DI assumes a low value if one of its factors assumes a
low value, independent of the other factors.
Coefficients of the DF were chosen rather tightly: The DF grows, starting from about
0.7, thus asking for classifiers that are markedly better than random guessing of the two
classes (which would attain PrecisionC and RecallC values around 0.5 in case of perfect
class balance). Starting from objective values about 0.95, the DF is close to one. The
rationale behind making the DF soft on the high end is as follows: Mediocre sensitivity
of the detector, i.e. mediocre RecallD, frequently results in the absence of FP detector
responses because only the most salient nano-objects are targeted by the detector
parameter set. This makes the classification task trivial: A classifier is constructed
that simply classifies all candidates as nano-objects, and both, PrecisionC and RecallC,
attain their maximum of one. Despite the good classifier results, parameter sets with
mediocre RecallD should be easily dominated by parameters that trade off incurring
some misclassifications for better RecallD. Making the DFs of PrecisionC and RecallC
soft on the high end realizes this heuristic because the returns for increasing PrecisionC

and RecallC diminish beyond 0.95, while the returns for increasing RecallD do not.

For selecting the single most desirable parameter set from a Pareto front obtained in the
Optimization stage of SynOpSis, the geometric mean DI from Equation (3.8) [TW06] is used.

7.3. Setup of SynOpSis for PAMONO 197

This is one of three purposes for which the desirability approach can be used in SynOpSis,
as discussed in detail in Section 3.8.3. These three purposes will be termed now for future
reference within text and plots.

Terminology 7.3. Three Desirability modes are evaluated: Desirability mode Disabled
means that computing DFs is disabled during optimization but is used solely after optimization,
in selecting the individual maximizing the geometric mean DI from the Pareto front. Search
is conducted over the full front, and the result can be used to explore the trade-offs between
objectives. Desirability mode Multi-Objective optimizes the DFs in a multi-objective fashion,
instead of doing so for the raw objective values. It aims at narrowing the region visited in raw
objective space and by that at increasing convergence speed. Desirability mode Scalarizing
pursues the same goals but does so by single-objective optimization of the geometric mean DI.
The strategy for selecting individuals from the Pareto front is the same in all modes.

Desirability modes and optimization modes can be combined arbitrarily, and all arising
nine combinations are evaluated in detail in Section 7.5.

7.3.4 Model Selection and Performance Estimation Strategies

Cross-validation is a technique that originated in statistics and machine learning to prevent
undue optimism in the assessment of performance [Koh95; SH97]. SynOpSis applies cross-
validation not only to its machine learning-based components that constitute the classifier,
but to the overall optimization approach: Parameters are tuned for both, the detector and
classifier, and parameter selection as well as performance estimation are embedded into
this cross-validation, aiming at avoiding overfitting and optimism. Hence, disjoint datasets
are used in optimization (parameter tuning), model selection (picking the most desirable
parameters from the Pareto front) and performance estimation (predicting performance to
be expected on unseen data). Using disjoint datasets in all three mentioned tasks prevents
optimism5 in each one. The thus-required three datasets and their roles will be explained
now.

Datasets Used in Cross-Validation

Conducting optimization, model selection and performance estimation with respect to a
separate dataset each, can easily be embedded into a three-fold cross-validation, wherein
one third of the data is used for each task. Throughout the course of the evaluations in this
chapter, this strategy is adhered to. As each fold of this cross-validation requires a separate
run of the Optimization stage, the number of folds is kept at its minimum of three.

In order to denote the three employed synthetic datasets, Terminology 3.3 is used: Detector
and classifier parameters are optimized on the training dataset, the single best parameter
set is selected from the Pareto front with respect to its DI on the validation dataset, and its
performance is estimated on the test dataset. Doing so constitutes one fold of cross-validation.
Then the roles of the datasets are swapped, and the process is iterated, constituting the next
fold. Regarding only derangements of the roles (i.e. roles are permuted such that no dataset
assumes the same role twice) results in three-fold cross-validation. This cross-validation can
be regarded as an outer loop around the Optimization stage, model selection and performance

5Theoretical background on the issue of optimism was given in Section 3.9.3, cf. also [SH97].

198 Chapter 7. Evaluation of SynOpSis for PAMONO

estimation in the overview of the SynOpSis approach in Figure 3.2. Each fold yields different
detector parameters and thus a different classifying model to be used in the Application stage
for analyzing the real sensor data.

Synthesis of Training, Validation and Test Datasets

Prior to this cross-validation, and specifically for the experiment to be analyzed, the Synthesis
stage (cf. Chapter 4) generates the three disjoint datasets, each consisting of synthetic images
and a ground truth segmentation. As input, the Synthesis stage receives a background
measurement IT=1 recorded prior to inserting nano-objects. IT=1 should be three times as
long as the intended length of a single one of the three datasets because one third of this data
serves as the background measurement in each. Hence the length of the synthetic training,
validation and test dataset is invariant under swapping the roles between folds. Besides the
disjoint background measurements, disjoint sets of archetypes, i.e. of template nano-objects,
are used. Therefore, cross-validation increases the manual segmentation effort arising in the
Synthesis stage by factor three. In the evaluations within this chapter, 20 archetypes were
manually segmented per dataset. Over all datasets and experiments, synthetic nano-objects
were rendered at a constant density of 2.5 ⋅ 10−6 nano-objects per pixel of the underlying
third of the background measurement IT=1. This is roughly three times the average density
observed in the real sensor data, cf. Table 7.1.

Optimization on the Training Dataset

The Optimization stage uses solely the training dataset, and one evaluation of detector and
classifier parameters works as follows: The detector is run on the training images, and RecallD
and M-Rate are evaluated by matching the result to the synthetic ground truth. Furthermore,
this matching assigns ground truth labels to the detector output. For computing classifier
objectives, an additional five-fold cross-validation is used to reduce undue optimism in them,
cf. [Koh95] and Section 3.9. This inner cross-validation is applied only during optimization,
and it pertains solely to the classifier. Hence the detector output processed within this
cross-validation remains the same over folds. During classifier cross-validation, this output is
divided into five subsets using stratified sampling, and the classifying model in each fold is
learned using the classifier parameters to be currently assessed. Objective values reported for
the classifier are the averages achieved over the folds.

If the selected optimization mode is Sequential, the detector is optimized first, until its
final parameters have been determined, followed by optimizing the classifier separately. In
optimization modes Global 4 and Global 3 , detector and classifier objectives are optimized
together. Note that in global optimization modes, classifier objectives serve two purposes:
Firstly, they assess the quality of the classifier parameters, and secondly, they indirectly
measure “classifiability” of the data produced by the detector, thus providing feedback to
detector parameter optimization. In sequential optimization, i.e. with detector parameters
already fixed, classifier objectives can only influence classifier parameters, as no feedback can
be given to the optimization of detector parameters.

7.3. Setup of SynOpSis for PAMONO 199

Model Selection on the Validation Dataset

Model selection in SynOpSis serves not only to select an appropriate classifying model in
terms of the employed classifier parameters but it encompasses detector parameters as well,
hence counteracting overfitting of both, detector and classifier parameters. The objectives
measuring the quality of these parameters are evaluated with respect to the unseen validation
dataset. A scalarization of the objective vector in terms of the geometric mean DI (cf.
Section 7.3.3) is used, i.e. the expert preferences modeled in the desirability approach are
incorporated. The detector and classifier parameters that maximize the DI on the unseen
validation dataset are selected.

Performance Estimation on the Test Dataset

Performance estimation utilizes the detector and classifier parameters chosen by model
selection: The selected detector parameters are applied to analyze the training dataset, and
the result is labeled by matching it to the ground truth. Then, from the labeled data, a
classifying model is learned using the selected classifier parameters. Finally, the selected
detector parameters and the trained classifying model are used to analyze the unseen test
dataset, and the objective values resulting from this analysis serve as the performance
estimates. Using a fully separate test set ensures that no information about this test set is
used in neither optimization and training, nor in model selection.

7.3.5 Computing Classifying Models

Tightly connected to model selection and performance estimation, as discussed in the previous
section, is the computation of the classifying models used to these ends, and of the final
classifying model used to analyze real sensor data. As argued for in Section 6.7.1, the Random
Forest algorithm is used to learn all classifying models.

Classifying Models Used for Training, Validation and Test Datasets

During optimization, model selection and performance estimation, classifying models are
learned solely from the ground truth-labeled detector results for the training dataset. In
optimization, the classifier parameters are input by the MOGA, and the inner five-fold
cross-validation described in Section 7.3.4 generates subsets for testing. In model selection,
the classifier parameters are those to be scored, and ground truth-labeled detector results
for the validation dataset are used for testing. In performance estimation, the classifier
parameters are those chosen by model selection, and ground truth-labeled detector results for
the test dataset are used for testing. Any classification results reported in the course of this
chapter with respect to training, validation and test datasets are based on classifying models
from performance estimation, learned from the training dataset only, using the classifier
parameters from model selection.

Classifying Model Used for Real Sensor Data

The final classifying model used by the Application stage to classify the real sensor data is
learned as follows: In order not to waste any data, it is learned from the union of the ground
truth-labeled detector results for the training, validation and test datasets. The employed

200 Chapter 7. Evaluation of SynOpSis for PAMONO

detector and classifier parameters are those chosen by model selection. In order to attain
real-time-capability, this final classifying model is learned prior to the Application stage, as all
its constituents are already available. Any classification results reported in the course of this
chapter with respect to real sensor data are based on classifying models created as described in
this paragraph.

7.3.6 Measurement System

As the last component in the utilized setup of SynOpSis for analyzing PAMONO data, the
employed hardware and operating system are listed here:

System Specification 7.1. Intel® Core™ i7-2600 with four cores at 3.4 GHz and eight
threads. Cache size: 8192 kB. Memory: 12 GB DDR3 RAM at 1333 MHz. GPU: Nvidia®

GeForce® GTX 980 (GM204), 2048 shaders at 1126 MHz (boost: 1216 MHz), 4 GB GDDR5
RAM at 1753 MHz, 256-bit interface width. Operating system: Microsoft® Windows® 7.

All computations described in this chapter, including all measurements of execution time,
were carried out on this system.

7.4 Illustrated Results of a Single Optimization and Analysis

As a starting example, this section gives a complete walkthrough of a single run of the
Optimization stage: Convergence of objectives and the obtained Pareto front are examined,
and trade-offs between objectives are investigated. Finally, the optimized parameters and
the classifying model are utilized in the Application stage to analyze the real sensor data.
Regarding only a single optimization enables thorough visualization of all results, providing a
visual intuition behind the more abstract results in Section 7.5. The latter then aggregate
over a multitude of optimizations, conducted for different experiments, setups and folds.
In the current section, however, experiment 100 nm HQ, as described in Table 7.1, serves
as the example, i.e. one of the more difficult experiments is examined. SynOpSis was run
with optimization mode Global 4 and desirability mode Scalarizing, as argued for later, in
Section 7.5.4.

Objectives during the Optimization Stage

Figure 7.4 plots the development of the four objectives (cf. Section 7.3.1) and of the DI
∆(y) (cf. Section 7.3.3) over the course of optimization. All measures refer to the training
dataset (cf. Section 7.3.4). In (a)–(e), the individuals fulfilling the early cancellation criterion6

have been removed. Doing so serves to avoid clutter in the plots in (a)–(e). Besides the
original function values depicted in blue, these plots also show sorted function values in red,
illustrating how values distribute across the codomain. Furthermore, a green curve displays
the best values attained so far in an objective, and an orange curve presents the average over
the individuals examined thus far.

As can be seen from the green curves in (b)–(d), individuals performing perfectly in terms
of M-Rate, PrecisionC and RecallC can be found very quickly. In contrast to that, RecallD

6The early cancellation criterion is fulfilled if an individual produces more than a = 5 times more detector
responses than there are ground truth target patterns in the training set, cf. Section 5.8.

7.4. Illustrated Results of a Single Optimization and Analysis 201

0 500 1000 1500

Individual Index

0

0.2

0.4

0.6

0.8

1

R
ec
a
ll
D

RecallD of indiv.

RecallD sorted

RecallD maximum

RecallD average

(a) RecallD

0 500 1000 1500

Individual Index

0

0.5

1

1.5

2

M
-R

a
te

M-Rate of indiv.

M-Rate sorted

M-Rate minimum

M-Rate average

(b) M-Rate

0 500 1000 1500

Individual Index

0

0.2

0.4

0.6

0.8

1

P
re
ci
si
o
n
C

PrecisionC of indiv.

PrecisionC sorted

PrecisionC maximum

PrecisionC average

(c) PrecisionC

0 500 1000 1500

Individual Index

0

0.2

0.4

0.6

0.8

1

R
ec
a
ll
C

RecallC of indiv.

RecallC sorted

RecallC maximum

RecallC average

(d) RecallC

0 500 1000 1500

Individual Index

0

0.2

0.4

0.6

0.8

1

∆
(y
)

∆(y) of indiv.

∆(y) sorted

∆(y) maximum

∆(y) average

(e) ∆(y)

0 500 1000 1500 2000 2500

Individual Index

0

0.2

0.4

0.6

0.8

1

∆
(y
)

∆(y) of indiv.

∆(y) sorted

∆(y) maximum

∆(y) average

(f) ∆(y) (incl. early cancellations)

Figure 7.4: Development and Convergence of Objectives. The development of objectives and of the
Desirability Index (DI) ∆(y) is shown over the number of evaluated individuals. In (a)–(e),
individuals fulfilling the early cancellation criterion were removed to avoid clutter. In contrast,
(f) shows all individuals, enabling to assess convergence (saturation) of ∆(y) over all function
evaluations. Depending on the favored ratio between ∆(y) and execution time, the number of
individuals can be reduced in future optimizations.

202 Chapter 7. Evaluation of SynOpSis for PAMONO

0.6

0

0.7

0.8

RecallΠ

P
re
ci
si
o
n
C

0.5

2.5

0.9

2

M-Rate

1.5
1

0.51

1

0

Dominated
Non-dominated

Figure 7.5: Pareto Front, Reduced to 3-D. The Pareto front resulting from the optimization in Figure 7.4
is shown. The dimension of objective space has been reduced to three by multiplying RecallD

and RecallC to form the RecallΠ axis, thus allowing for this type of visualization. Large gains in
RecallΠ can be traded off for small increases in M-Rate. All but one individual with M-Rate > 0.15
are dominated, and all non-dominated individuals exhibit PrecisionC

> 0.99.

in (a) takes more individuals to attain good values, and the perfect value of one is never
achieved in this experiment. Hence, if there were no dependencies and thus no trade-offs
between objectives, the conducted search could be regarded as a search among individuals
with perfect values in M-Rate, PrecisionC and RecallC, made distinguishable by different
values in RecallD. However, as e.g. larger RecallD typically results in a larger rate of multiple
detections (M-Rate) and increases the difficulty of the classification task (affecting PrecisionC

and RecallC), the search identifies good trade-offs between competing objectives.

In order to assess convergence speed and saturation of the DI, (f) repeats (e) including all
individuals, i.e. also those for which the early cancellation criterion was fulfilled are plotted.
As the utilized geometric mean DI attains high values only if all its constituent DFs attain
high values (cf. Section 3.8.2), this plot shows how many individuals are needed to find
parameter sets that perform well in all objectives simultaneously. For example, a DI value
of 0.9239 is attained after 1543 individuals have been evaluated, and only a single minor
increase in DI is observed after that (DI 0.9310 at individual 2260), cf. green curve in (f). A
behavior of saturation similar to that of the DI in (f) was observed in all experiments, i.e.
the number of individuals regarded in the Optimization stage of SynOpSis can be reduced
without severe loss in results quality on training data.

7.4. Illustrated Results of a Single Optimization and Analysis 203

Table 7.2: Confusion Matrix of the Detector. The confusion matrix of the detector, as attained on real
sensor data from experiment 100 nm HQ, is shown in terms of absolute and relative values. Its
structure is analogue to Table 3.1, hence there are no TNs [WHS+12; SLN+09]. As discussed
in Section 3.5.2, the TP entry, which was 157, has been replaced with T̂P = 153, i.e. it was
cleansed from four repeated detector responses. The attained values of objectives and measures
are: PrecisionD

= 0.25758, RecallD = 0.78462, M-Rate = 0.02614.

Ground Truth
Target Non-Target

Detector
Response T̂P = 153 (24%) FP = 441 (69%)
No Response FN = 42 (7%) TN = 0

Pareto Front

Figure 7.5 shows the Pareto front obtained after the optimization in Figure 7.4. In order to
make the four objectives of optimization mode Global 4 eligible for this type of visualization,
RecallD and RecallC have been multiplied to become RecallΠ, as argued for in Section 7.3.2
in the context of optimization mode Global 3 . Hence the dimension of objective space is
reduced to three. The Pareto front was recomputed with respect to this reduced objective
space, which decreases the number of non-dominated individuals, compared to the original
four-dimensional space.

The RecallΠ dimension in Figure 7.5 exhibits the largest spread: Points disperse rather
uniformly along the entire RecallΠ axis. Concerning the other dimensions, they tend to focus
in a region of high PrecisionC and low M-Rate. The lowest observed value in PrecisionC

across all individuals is about 0.6, while in the non-dominated individuals PrecisionC is always
above 0.99. The vast majority of points exhibits M-Rate below 0.5. For increasing RecallΠ,
dominated points with higher M-Rate occur, but their density is comparably low.

Concerning the trade-offs between objectives, the following observations can be made
in Figure 7.5: Non-dominated points occur primarily along the RecallΠ axis, with large
gains in this dimension trading off for low increases in M-Rate. Only the very last gain in
RecallΠ is unduly expensive in terms of M-Rate: The rightmost non-dominated point has
coordinates (0.93167,0.54747,1) while the neighbor with next-lower RecallΠ has coordinates
(0.92234,0.14194,1): Reducing M-Rate by 0.4055, i.e. ≈ −40% in excess detector responses,
comes at the cost of 0.00933 in RecallΠ, i.e. ≈ −1% in correct primary responses. The non-
dominated point with lowest RecallΠ is (0.27164,0,1), i.e. accepting an increase of 0.14194
in M-Rate yields an increase of 0.65070 in RecallΠ. All other non-dominated points occur
closely to a line between these two points.

Analysis Result for Real Sensor Data

Results of running the Application stage of SynOpSis (bottom part of Figure 3.2) on the real
sensor data, using the outputs of the previous optimization are reported now. Ground truth
for experiment 100 nm HQ was obtained via manual segmentation by human experts, and
results quality was evaluated via the matching and labeling procedure from Section 5.8.

Table 7.2 displays the confusion matrix of the detector, with details discussed and
objectives reported in the table caption. This also holds for Table 7.3, which does the same
for the classifier.

204 Chapter 7. Evaluation of SynOpSis for PAMONO

Table 7.3: Confusion Matrix of the Classifier. The classifier confusion matrix as attained for the
detection results from Table 7.2 is shown. Its structure is analogue to Table 3.2. The ‘Positive’-
column corresponds to the TPs of the detector and sums to 157 because the classifier also
receives the four repeated detector responses, cf. caption of Table 7.2. The ‘Negative’-column
corresponds to the FPs of the detector. 94% of the detector responses are classified correctly.
The attained values of objectives and measures are: PrecisionC

= 0.85119, RecallC = 0.91083,
D-Rate = −0.13846.

Ground Truth
Positive (TPs of detector) Negative (FPs of detector)

Classifier
Positive TP = 143 (24%) FP = 25 (4%)
Negative FN = 14 (2%) TN = 416 (70%)

As a unified visual depiction of the results tabulated across the two confusion matrices,
Figure 7.6 gives a 3-D perspective view of the analysis results in the spatiotemporal coordinate
system of PAMONO sensor data. In this figure, red color indicates the manually segmented
ground truth polygons, while blue color is used for polygons output by the detector. Saturated
color indicates ground truth or detector polygons for which a match of the respective other
type exists. Black lines connect primary matches, while green lines connect repeated detections
to the respective ground truth polygon. Unsaturated color is used for ground truth or detector
polygons without a matching polygon of the respective other type. In particular, unsaturated
red polygons are ground truth polygons missed by the detector, which can not be recovered
by the classifier (False Negatives (FNs) of the detector). In contrast to that, unsaturated blue
polygons are FPs of the detector which can be recovered by the classifier. Cases where the
classifier was not able to do so are marked with a black cross, i.e. these crosses mark FPs of
the classifier. Conversely, black circles indicate its FNs, i.e. cases where the classifier sorted
out a correctly detected nano-object. Any unmarked detector polygon (blue) was classified
correctly.

7.5 Optimization Options and Final Analysis Results

Section 7.4 provided a visual understanding of the results produced by the Optimization stage
and the Application stage of SynOpSis within a single run. For conveying the bigger picture,
this section provides more abstract results, aggregating over a multitude of optimizations to
provide a more representative overview of the capabilities of SynOpSis. The results of 162
executions of the Optimization stage serve as the basis for aggregation within this section. This
number is composed as follows: Six different PAMONO experiments, as listed in Table 7.1, are
used as the input data, and each one undergoes optimization for all combinations of the three
optimization modes from Section 7.3.2 with the three desirability modes from Section 7.3.3.
Each of these optimizations is repeated in three folds of cross-validation, as described in
Section 7.3.4, resulting in a total number of 162 executions of the Optimization stage. All
optimization results, i.e. detector parameters and the final classifying models, learned as
according to Section 7.3.5, are used in the Application stage to analyze the real sensor data.
Complementing these results, the Application stage is furthermore executed on the training,
validation and test set, using a classifying model learned solely from the training dataset.
This serves to assess performance within a purely synthetic, cross-validated context.

7.5. Optimization Options and Final Analysis Results 205

x
y

t

Figure 7.6: 3-D Visualization of Analysis Results for Real Sensor Data. This 3-D perspective plot
in the spatiotemporal coordinate system of PAMONO sensor data visualizes the content of
both, the detector and classifier confusion matrix in Tables 7.2 and 7.3, respectively. A detailed
description of the semantics behind the employed colors, saturations and symbols is given in the
text.

206 Chapter 7. Evaluation of SynOpSis for PAMONO

PrecisionD RecallD M-Rate PrecisionC RecallC D-Rate

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Training

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Validation

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Test

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Real

Figure 7.7: Objectives and Measures over Datasets. Box plots summarizing the distributions of
objectives and measures (cf. legend above the figure) attained in 162 optimizations are shown.
This number results from all combinations of six experiments, three optimization modes and three
desirability modes across three folds of cross-validation. Each of the figures (a)–(d) summarizes
these 162 points for another dataset. A detailed comparison between analyses of the synthetic
datasets in (a)–(c) to the real sensor data in (d) is given in the text.

The purpose of this section is to firstly identify, which combination of optimization
and desirability mode works best on the given PAMONO experiments. This is done in
a coarse-to-fine fashion, starting with Section 7.5.1 summarizing the results from all 162
optimizations. Sections 7.5.2 and 7.5.3 separate these results by optimization and desirability
modes, respectively, while Section 7.5.4 regards all of their nine combinations, followed by
identifying the setup of SynOpSis that is used throughout the remainder if this section. This
remainder serves the second purpose, which consists in reporting the final analysis results
obtained for the six examined PAMONO experiments. Having chosen a single setup of
SynOpSis, results are no longer aggregated over different modes, but reported individually
per experiment, thus providing insight into finer variations of analysis quality between
experiments. Section 7.5.5 does so by evaluating analysis performance in terms of the
objectives and measures from Section 7.3.1, in order to validate the quality of SynOpSis
results, and to identify the limits of the method. Section 7.5.6 evaluates the quality of the
performance estimates delivered by SynOpSis. Then, Section 7.5.7 investigates specificity of
the obtained results by running the Application stage on real sensor data not containing any
nano-objects. Finally, Section 7.5.8 reports execution times in terms of the attained frame
rate of real-time analysis, evaluation cost per individual and overall optimization time.

7.5.1 Results Over Datasets

As a first impression of the analysis quality attained by applying SynOpSis to the PAMONO
experiments in Table 7.1, Figure 7.7 shows four box plots [MTL78], each summarizing the
results of all 162 conducted optimizations, as described in the first paragraph of Section 7.5.
The first three box plots relate to synthetic datasets (training (a), validation (b), test (c)),

7.5. Optimization Options and Final Analysis Results 207

and the utilized classifying model was learned solely from the training dataset. The fourth
box plot relates to the real sensor data (d), and the utilized classifying model was learned
from the union of all synthetic datasets, cf. Section 7.3.5. Each box plot summarizes the
distributions of the objectives and measures from Section 7.3.1 in terms of their quartiles
(box), the two most extreme points not deemed outliers (whiskers), and an individual marker
for each outlier (circles). Outliers are defined as follows: Let q1 and q3 denote the first and
third quartile, respectively, making r = q3 − q1 the Interquartile Range (IQR). Then any point
with a value smaller than q1 − 1.5r or larger than q3 + 1.5r is considered an outlier.

A mapping between box colors and names of measures and objectives is given in the
legend at the top of the figure, in the same order as they appear in each box plot. Note
that the leftmost and rightmost measures, i.e. PrecisionD and D-Rate merely serve to report
properties of the analysis, but are not optimized, for the reasons discussed in Section 7.3.1.
PrecisionD measures class balance for the classifier, thus lower values indicate increased
necessity of a well-performing classifying model. D-Rate is a summary measure of analysis
quality, quantifying the relative deviation between the reported and the actual number of
nano-objects. In between these two measures, the distributions of the four optimized objectives
RecallD, M-Rate, PrecisionC and RecallC, as explained in Section 7.3.1, are characterized.
This scheme of displaying the results of optimization is adhered to throughout the entire
section, hence this introduction can be used for reference in interpreting later results.

In particular, at this coarsest level regarding all 162 conducted optimizations, Figure 7.7
provides a summary of how measures and objectives behave over the four types of considered
datasets, while aggregating over all other aspects, i.e. over experiment, optimization and
desirability modes and folds of cross-validation. Most objectives deteriorate from left to right,
i.e. for increasing difficulty of the analysis task, where difficulty arises from decreasing fit
of the respective employed data. This can be seen particularly with regard to PrecisionC

and RecallC: Both attain median value one and IQR zero on training data (a), suggesting
that the classification errors incurred on validation (b) and test data (c) are primarily due to
differences in the concepts of the two classes between training and the other datasets. While
deterioration from training (a) over validation (b) to test (c) is mild, the real sensor data
(d) is affected more strongly: Median RecallD drops from 0.9250 on the test set to 0.8373 on
real data, and the IQR widens. While RecallC is nearly unaffected, median PrecisionC drops
from 1 to 0.9036, and the increased number of FPs in the classifier partly compensate for the
increase in FNs in the detector, resulting in a nearly unchanged median D-Rate of −0.0838,
which illustrates why D-Rate is not suitable as an objective, cf. Section 7.3.1. M-Rate is the
only objective that improves for real data, which can be explained by the fact that synthetic
data contains on average approximately three times more nano-objects than real data (cf.
Section 7.3.4), thus delivering more occasions for repeated detections. Median PrecisionD

drops from 0.9942 on the test set to 0.8795 on real data, indicating an increased importance
of having a good classifying model for the latter. Note that low PrecisionD provides no
evidence of low analysis quality, and its large numbers of outliers and wide IQR, as observed
throughout this section, merely point out a high diversity in class balance for the classifier.

7.5.2 Results Over Optimization Modes

Figure 7.8 groups all data shown in Figure 7.7 by optimization modes Global 4 , Global 3
and Sequential, as defined by Terminology 7.2 in Section 7.3.2. Hence, for each dataset,

208 Chapter 7. Evaluation of SynOpSis for PAMONO

PrecisionD RecallD M-Rate PrecisionC RecallC D-Rate

Sequential Global 4 Global 3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Training
Sequential Global 4 Global 3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Validation

Sequential Global 4 Global 3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Test
Sequential Global 4 Global 3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Real

Figure 7.8: Objectives and Measures over Optimization Modes. Box plots grouping the data from
Figure 7.7 by the three optimization modes defined in Section 7.3.2 are shown. Optimization
mode Global 4 is superior in terms of D-Summary (Equation (7.6)) on real sensor data (d).
However, differences in objectives and measures are small over optimization modes.

each group summarizes the distribution of the 54 points obtained in the optimization mode
corresponding to the group name, while aggregating over experiment, desirability mode and
fold. Deterioration comparable to Figure 7.7 can be observed over datasets (a)–(d).

In this section, however, the focus lies on identifying the optimization mode that performs
best in analyzing real data, which is why Figure 7.8d is examined more closely: Given this
data, the choice of a certain optimization mode is to be taken with respect to empirical
distributions in two measures and four objectives. One way of facilitating this choice is to
regard medians (or any other summary statistic) of these distributions only, resulting in a

7.5. Optimization Options and Final Analysis Results 209

six-dimensional space containing three individuals. Doing so for the medians in (d) yields
three non-dominated individuals, hence Pareto dominance can not readily be applied in
taking the choice. One solution would be to compute a DI with respect to suitable DFs.
However, this ignores the spread around the median, unless it is incorporated into the DI,
requiring additional DFs to be defined. A simpler, empirically driven heuristic can be derived
with respect to the summary measure D-Rate: From the perspective of practical application
of SynOpSis in PAMONO data analysis, the decisive criterion of performance is the deviation
between the reported and the actual number of nano-objects in real data, as measured by
D-Rate. Besides a median of D-Rate that should be close to zero, its spread should be as
small as possible, such that good D-Rate is achieved not only for the median. One way of
formalizing this is D-Rate Summary (D-Summary), defined as

D-Summary = ∣Median(D-Rate)∣ + IQR(D-Rate), (7.6)

where the functions Median(○) and IQR(○) yield the median and Interquartile Range
over the values observed in the empirical distributions of D-Rate. Minimization of D-
Summary realizes the described heuristic. Doing so over optimization modes on the real
data in (d) identifies Global 4 (Median(D-Rate) = −0.0810, IQR(D-Rate) = 0.1238) as su-
perior to Sequential (Median(D-Rate) = −0.0867, IQR(D-Rate) = 0.1443) and Global 3
(Median(D-Rate) = −0.0852, IQR(D-Rate) = 0.1443): Median and IQR vote for Global 4 .

Note that taking this choice with respect to a measure derived from D-Rate may encounter
the issue that good values in D-Rate can be attained even in case of very bad values in all
four objectives, as long as the errors cancel each other out (cf. Section 7.3.1). However, this
choice is taken with respect to optimization results. Hence, for the points in Figure 7.8d it is
already ensured that they provide good values in RecallD, M-Rate, PrecisionC and RecallC.

Despite the data in Figure 7.8d voting for optimization mode Global 4 in terms of D-
Summary, Global 4 is beaten by Sequential and Global 3 in three of the four optimized
objectives each. This superiority, however, is by a small margin, as differences between
optimization modes are small in all objectives and measures. Therefore, the choice of an
optimization mode is re-examined in combination with the choice of a desirability mode. This
is done in Section 7.5.4, after Section 7.5.3 examined desirability mode alone.

7.5.3 Results Over Desirability Modes

Analogous to how the previous section examined the behavior of measures and objectives
over different choices of optimization mode, this section does so for the three desirability
modes Disabled, Multi-Objective and Scalarizing as defined by Terminology 7.3 in Sec-
tion 7.3.3. Figure 7.9 shows the corresponding results, grouping the data from Figure 7.7
by desirability modes, while aggregating over experiments, optimization modes and folds
of cross-validation. As observed before, deterioration in objectives and measures is small
over the synthetic datasets in (a)–(c) and more pronounced for the real sensor data in
(d). Examining D-Summary from Equation (7.6) for the real sensor data yields superior-
ity of desirability mode Scalarizing (Median(D-Rate) = −0.0680, IQR(D-Rate) = 0.1367)
over Disabled (Median(D-Rate) = −0.0979, IQR(D-Rate) = 0.1117) and Multi-Objective
(Median(D-Rate) = −0.0897, IQR(D-Rate) = 0.1636). Differences in all measures and ob-
jectives are small over desirability modes, so like with optimization modes in the previous
section, these results are to be viewed with caution.

210 Chapter 7. Evaluation of SynOpSis for PAMONO

PrecisionD RecallD M-Rate PrecisionC RecallC D-Rate

Disabled Multi-Objective Scalarizing

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Training
Disabled Multi-Objective Scalarizing

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Validation

Disabled Multi-Objective Scalarizing

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Test
Disabled Multi-Objective Scalarizing

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Real

Figure 7.9: Objectives and Measures over Desirability Modes. Box plots grouping the data from
Figure 7.7 by the three desirability modes defined in Section 7.3.3 are shown. Desirability mode
Scalarizing is superior in terms of D-Summary (Equation (7.6)) on real sensor data (d). However,
like with optimization modes in Figure 7.8, differences in objectives and measures are small over
desirability modes.

7.5.4 Choice of Optimization and Desirability Mode

Sections 7.5.2 and 7.5.3 regarded optimization and desirability modes in isolation while
aggregating over the respective other. Now this section groups the data from Figure 7.7 more
finely, resolving all nine combinations of optimization and desirability modes.

Figure 7.10 does so in terms of box plots, showing objectives and measures as attained
for the real sensor data, where each group aggregates over experiments and folds only. As
a first observation, the decreased amount of aggregation resulting from the finer grouping

7.5. Optimization Options and Final Analysis Results 211

PrecisionD RecallD M-Rate PrecisionC RecallC D-Rate

Se
qu
en
tia
l /

D
isa
bl
ed

Se
qu
en
tia
l /

M
ul
ti-
O
bj
ec
tiv
e

Se
qu
en
tia
l /

Sc
al
ar
iz
in
g

G
lo
ba
l 4

/
D
isa
bl
ed

G
lo
ba
l 4

/
M
ul
ti-
O
bj
ec
tiv
e

G
lo
ba
l 4

/
Sc
al
ar
iz
in
g

G
lo
ba
l 3

/
D
isa
bl
ed

G
lo
ba
l 3

/
M
ul
ti-
O
bj
ec
tiv
e

G
lo
ba
l 3

/
Sc
al
ar
iz
in
g

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.10: Objectives and Measures over Optimization and Desirability Modes. Box plots
grouping the data from Figure 7.7 by all combinations of optimization and desirability modes
(cf. Sections 7.3.2 and 7.3.3) are shown for real sensor data only. Combining optimization mode
Global 4 with desirability mode Scalarizing is superior in terms of D-Summary (Equation (7.6)).

does not increase definiteness of the votes in terms of D-Summary from Equation (7.6):
Differences in D-Summary (and in all measures and objectives except for PrecisionD) remain
small. However, optimization mode Global 4 and desirability mode Scalarizing which
minimized D-Summary in isolation also do so in combination (Median(D-Rate) = −0.0414,
IQR(D-Rate) = 0.1138). The second-best combination in terms of D-Summary is Global
3 , Scalarizing (Median(D-Rate) = −0.0638, IQR(D-Rate) = 0.1186), while the worst one
is Sequential, Multi-Objective (Median(D-Rate) = −0.0729, IQR(D-Rate) = 0.1978). The
small difference between the Global 4 , Scalarizing combination and the second-best indicates
that this vote in terms of D-Summary is not clear enough to serve as the sole justification
for running SynOpSis with this combination. A definitive decision would require more
experiments. Furthermore, minimizing D-Summary is not the only conceivable way of
choosing the combination of optimization and desirability mode, cf. Section 7.5.2. So the
point to be made in the following paragraph is not that the decision taken there is the best or
the only reasonable decision, but merely that it is a decision, obtained in a systematic fashion,
i.e. with respect to a computable criterion. Its primary benefit lies in having a decision,
allowing for a more detailed analysis of the results that were obtained adhering to it.

The small differences in the selected criterion D-Summary and the small number of
experiments, as mentioned in the previous paragraph, put this decision on a thin basis.
However, small differences also mean that among the top-ranking combinations, the concrete
decision is of negligible importance, if suboptimality on the order of these small differences
can be tolerated. Therefore, the final decision is taken as follows: In order to remove the
optimization and desirability mode variables from the data in Figure 7.7, only the Global 4 ,
Scalarizing combination is regarded in the subsequent evaluations. As a consequence, from
the 162 optimizations displayed in Figure 7.7, only 18 are considered further, which are due

212 Chapter 7. Evaluation of SynOpSis for PAMONO

to the six experiments in three folds of cross-validation. This allows Sections 7.5.5 to 7.5.8 to
examine measures and objectives on the per-experiment level.

Before this is done, the consequences of setting optimization and desirability mode to
Global 4 and Scalarizing, respectively, are examined more closely: This combination means
that the four objectives from Section 7.3.1 undergo global optimization, i.e. detector and
classifier parameters are optimized simultaneously. Global optimization allows for feedback
from the classifier to detector parameter optimization via the path that parameters producing
detector results that are hard to classify are easily dominated in classifier objectives. The
employed optimization, however, is single-objective because the four objectives are summarized
by computing their geometric mean DI, which aims at focusing the search on the desirable part
of objective space. The reduction from a multi-objective to a single-objective optimization
makes the problem amenable to single-objective optimization algorithms, which is, however,
not in the scope of this thesis. As the DI-based approach does not aim at covering an entire
Pareto front in objective space, usually fewer evaluations of points in parameter space suffice
(cf. the convergence of the DI in Figure 7.4f). Note, however, that scalarization via the DI
should only be applied if the Pareto fronts are not of interest, e.g. in optimizations conducted
for everyday lab practice, where the goal is to find a single point in the desirable region
of objective space with as few function evaluations as possible. In contrast to that, if the
goal is to investigate how the different objectives trade off with each other, multi-objective
optimization with desirability mode Disabled is recommended because of its tendency to
produce solutions that spread more diversely over objective space.

7.5.5 Final Analysis Results Over Experiments

With optimization and desirability modes fixed to Global 4 and Scalarizing, respectively, as
determined in Section 7.5.4, this section reports the finally obtained analysis results for the six
examined PAMONO experiments from Table 7.1. These results are no longer aggregated but
reported individually per experiment, enabling to assess the impact of varying nano-object
sizes and SNRs in PAMONO experiments on analysis quality of SynOpSis. This serves to
validate SynOpSis as an approach to analyzing PAMONO sensor data, and to identify its
limitations.

Figures 7.11 and 7.12 visualize measures and objectives, similarly to the box plots in the
four previous sections. Results are grouped by the names of the experiments from Table 7.1,
and for each measured quantity three values are indicated by squares. These three values
correspond to the three folds of cross-validation (cf. Section 7.3.4). Their median is drawn
slightly larger than the higher and lower value.

Training

With regard to the training datasets in Figure 7.11a, one can see that Table 7.1 lists the
experiments approximately in the order of increasing difficulty of analysis: RecallD tends
to decrease, M-Rate increases, and the deviation of D-Rate from zero increases in the
negative direction, i.e. the number of nano-objects is underestimated with increasing severity.
PrecisionC and RecallC are close to one in all cases. The decrease in analysis quality observed
from top to bottom of Table 7.1, respectively from left to right of Figure 7.11a is in agreement
with the fact that the SNRs listed in Table 7.1 and visualized in Figures 7.1 and 7.2, solely
capture step function height versus noise variability. In particular, they neither measure

7.5. Optimization Options and Final Analysis Results 213

PrecisionD RecallD M-Rate PrecisionC RecallC D-Rate

200 nm HQ 200 nm MQ 200 nm LQ 200 nm Gpy 100 nm HQ 100 nm LQ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Training

200 nm HQ 200 nm MQ 200 nm LQ 200 nm Gpy 100 nm HQ 100 nm LQ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Validation

Figure 7.11: Objectives and Measures over Experiments – Training and Validation Datasets.
Analysis results for optimization mode Global 4 combined with desirability mode Scalarizing
are shown, as chosen in Section 7.5.4. Results are resolved by experiment, and each of the three
squares represents one of the three folds of cross-validation, with a larger square indicating the
median. (a) shows results on the training dataset, while (b) does the same for the validation
dataset. The truncated value in the D-Rate measure of experiment 100 nm LQ is 2.80165.
Figure 7.12 shows the same results for the test and real sensor dataset.

214 Chapter 7. Evaluation of SynOpSis for PAMONO

PrecisionD RecallD M-Rate PrecisionC RecallC D-Rate

200 nm HQ 200 nm MQ 200 nm LQ 200 nm Gpy 100 nm HQ 100 nm LQ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Test

200 nm HQ 200 nm MQ 200 nm LQ 200 nm Gpy 100 nm HQ 100 nm LQ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Real

Figure 7.12: Objectives and Measures over Experiments – Test and Real Datasets. This is a
continuation of Figure 7.11, also showing analysis results for optimization mode Global 4
combined with desirability mode Scalarizing. Here, results for the test (a) and real sensor
datasets (b) are shown. Results are resolved by experiment, and each of the three squares
represents one of the three folds of cross-validation, with a larger square indicating the median.

the amount and severity of artifacts appearing in the images, nor do they capture similarity
of artifacts and actual nano-object adhesions. Hence the approximate order of increasing
analysis difficulty in Table 7.1 is not fully reflected in its SNR-columns. As an example,
the 200 nm Gpy experiment has the highest minimum, median and maximum SNR, but its
analysis is aggravated by many large-scale artifacts with amplitudes similar to nano-object
adhesions, cf. Figure 2.4 for an image from this experiment after background elimination.
Despite exhibiting the highest SNRs, analysis results for experiment 200 nm Gpy are not
better than for the other experiments.

7.5. Optimization Options and Final Analysis Results 215

Validation and Test

As deterioration of measures and objectives from the training to the validation and test
datasets is similar, only the test dataset is discussed here, which is displayed in Figure 7.12a:
Compared to the training dataset, RecallD generally drops, with the lowest value of 0.8487
attained in experiment 100 nm LQ, and the highest value of 1 in 200 nm HQ. M-Rate increases,
while PrecisionC and RecallC nearly retain their high values, except for one severe drop in
PrecisionC, entailing a large increase in D-Rate on experiment 100 nm LQ, thus hinting
at the limits of method. D-Rate in the other experiments is comparable to its values in
training, which in combination means that the decreased RecallD is obfuscated primarily by
increased M-Rate and only secondarily by the slightly decreased PrecisionC. Having chosen
optimization and desirability modes with respect to D-Rate, as was done in Section 7.5.4,
promotes this phenomenon.

Real Sensor Data

As the test datasets are used to estimate the performance to be expected on the real sensor
data (cf. also Section 7.5.6), the differences between test and real datasets, both displayed
in Figure 7.12, will be examined now. A general drop in RecallD can be observed, except
for the 100 nm LQ experiments, where two folds produced higher RecallD on real than on
test data. This comes at the cost of a large decrease in PrecisionD for this experiment, i.e.
for the real data, the detector yields more FP responses. However, these can mostly be
compensated for by the classifier, resulting in D-Rate values between zero and 0.3214 for the
most difficult-to-analyze experiment 100 nm LQ. Comparing the higher quality experiment
100 nm HQ to experiment 100 nm LQ, the same transition from under- to overestimation of
nano-object counts as on the validation and test set can be observed in D-Rate, albeit being
less pronounced on the real data. Experiment 100 nm HQ exhibits the largest underestimation
of nano-object counts, with D-Rate ranging from −0.3179 to −0.1385, which is primarily due
to low RecallD, ranging from 0.5897 to 0.7846. On the 200 nm experiments, D-Rate values
between −0.1505 and 0.07179 are observed. Regarding the test set objectives as estimates
for the values to be expected on real data, M-Rate is estimated to be worse than it actually
is on real data. PrecisionC and RecallC are overestimated in most cases, with PrecisionC

deteriorating more strongly between test and real than RecallC.

Limits of the Method

The transition from under- to overestimation of nano-object counts observed for validation,
test and real sensor data between experiments 100 nm HQ and 100 nm LQ can be interpreted
as indicating a limit in terms of input quality for SynOpSis. High quality sensor data with
100 nm nano-objects behaves comparably to 200 nm experiments: The number of nano-objects
is underestimated, and the severity of underestimation increases, which is in agreement with
the linear relationship between nano-object size and signal amplitude impeding nano-object
detection [ZKG+10]. In contrast to that, low quality sensor data with 100 nm nano-objects
results in an overestimation of the number of nano-objects. This can be explained by looking
at the SNRs of experiment 100 nm LQ in Table 7.1: The minimum SNR is 0.82224, while
the median SNR is 1.24673, which means that half of the nano-objects in experiment 100 nm
LQ exhibit an SNR from this range. For comparison, all algorithms surveyed in [CWG01]

216 Chapter 7. Evaluation of SynOpSis for PAMONO

break down for SNRs approaching four, while the best of those surveyed in [SLN+09] do
so for SNRs approaching two. SynOpSis achieves values of RecallD between 0.7321 and
0.9821 in this experiment, and this high sensitivity entails the risk of many FP responses
of the detector and thus low PrecisionD. This low PrecisionD can in parts be contained by
the classifier as can be seen from Figure 7.12b. However, the classification task is impeded
because low SNRs of nano-objects can increase their feature-space similarity to artifacts,
resulting in lower PrecisionC. Hence the low PrecisionD can not be completely compensated
for by the classifier, and the result is an overestimation of the number of nano-objects. The
transition from high to low quality gold layers in the context of 100 nm nano-objects is a point
where the combination of PrecisionD and PrecisionC drops below the critical level between
underestimation on experiment 100 nm HQ and overestimation7 on experiment 100 nm LQ.
Hence, to be on the safe side, only high quality gold layers should be used in the context of
100 nm nano-objects.

Stability of Optimization Results over Folds

Stability of optimization results over the three folds of cross-validation can be assessed by
examining the variation of the four objectives RecallD, M-Rate, PrecisionC and RecallC over
folds. In Figures 7.11 and 7.12, the black lines connecting the lowest, median and highest
value over the three folds serve as a visual cue of this variation (for values as numbers cf.
Table 7.4). On the training datasets in Figure 7.11a, i.e. on the datasets upon which the
detector and classifier were optimized, variation is low in all objectives (except for RecallD on
experiment 100 nm LQ). This indicates stability of optimization results not only over different
runs of the Optimization stage, but also over different data because each fold uses another
synthetic dataset for training, and all such datasets are pairwisely disjoint, cf. Section 7.3.4.
PrecisionD exhibits larger variations, however, this measure is not subject to the optimization.

Examining variation of objectives and measures over folds for datasets other than training
does not, in a strict sense, allow for a statement about stability of optimization, but in a more
general sense about stability in applying optimization results to different datasets they have
not been optimized for. Nevertheless, low variation of analysis quality over folds of unseen
data is a desirable property of a method, which is why it is investigated here. Concerning
validation, test and real data, variation in objectives increases compared to training, as
expected. This affects particularly PrecisionC on 100 nm experiments and RecallD on 100 nm
real data, while generally, variation in objectives remains low. Higher variation besides that
can only be observed in the measures PrecisionD and D-Rate that were not used as objectives.

Results Table

Up to this point, final analysis results were discussed solely on the basis of their visual
representations in Figures 7.11 and 7.12. Table 7.4 complements this with a numerical
representation of the analysis results for the real sensor data, as displayed in Figure 7.12b.

Rows relate to experiments and folds of cross-validation. Rows marked with ‘MAE’ in
the ‘Fold’-column are exceptions to this rule as they report Mean Absolute Error attained

7Note however, that another factor in the high D-Rate of experiment 100 nm LQ is the low number of
G = 56 nano-objects in the ground truth, i.e. a low density of nano-objects on the sensor, cf. Table 7.1.
Hence, as a further handicap for experiment 100 nm LQ, an FP classifier response has a larger weight in this
experiment than in experiments with a higher density of nano-objects.

7.5. Optimization Options and Final Analysis Results 217

in performance estimation. Details and an interpretation of these values, as well as of the
rightmost column ‘D-Diff’ are given in the context of evaluating the quality of performance
estimates in Section 7.5.6. All other columns refer to the objectives and measures from
Section 7.3.1.

Having a numerical representation of Figure 7.12b enables to better resolve the mostly
small variations in values over the folds of cross-validation. The point to be made with
respect to these is related to stability of overall analysis results on real data: Parameters
used over the folds are the results of different optimizations, each conducted with respect to
a different training dataset, all of which are pairwisely disjoint. The mostly small variations,
particularly in the 200 nm experiments, indicate that choice of the training dataset does not
affect analysis quality for real data strongly. Therefore, the three-fold cross-validation that
was done here for establishing stability can be omitted in everyday lab practice. As a result,
the Optimization stage need not be run three times for a new experiment, but only one time.
However, in order to reduce optimism in model selection and performance estimation (cf.
Sections 3.9 and Section 7.3.4), the three-fold cross-validation-like data division strategy into
training, validation and test dataset should be maintained, followed by optimizing on the
training dataset only, without permuting the roles of training, validation and test datasets
afterwards.

Conclusions

Taking a look at the ‘D-Rate’-column of Table 7.4 provides a summary of the analysis
outcomes for the six PAMONO experiments from Table 7.1: The reported numbers of nano-
objects in the real sensor data deviate from their ground truth numbers between −31.795%
and +32.143%. Both of these extremes are attained on the 100 nm experiments. The median
deviation amounts to −4.139%. Regarding only the 200 nm experiments, the range is from
−15.054% to +7.179%, while the median remains the same. Therefore, SynOpSis can be
applied successfully for PAMONO data analysis within applications that tolerate errors of
the given magnitudes in reported nano-object counts.

These results validate that parameters optimized on (and classifying models learned from)
synthetic data, transfer to the real data to be analyzed. They thus establish practicability of
the SynOpSis approach and provide baselines on attainable analysis quality. Furthermore,
they validate the PAMONO signal model in exactly the aforementioned terms: The signal
model is accurate enough such that a classifying model can be learned from synthetic data,
achieving high quality on real sensor data. An analogous relation holds for detector parameters
optimized on synthetic data, which validates the signal model in this respect. The latter
point answers the question of transferability from synthetic to real data in parameter space.
Now the following section repeats this question in objective space: It evaluates how well the
objective values and other measures obtained on the unseen synthetic test dataset predict
those observed on the real data. Hence it examines the performance estimation strategy of
SynOpSis.

7.5.6 Quality of Performance Estimates

Table 7.4 reports objectives and measures as attained for the six PAMONO experiments
in Table 7.1. The reported values were determined from a manually created ground truth
segmentation of the real sensor data. In everyday lab practice, ground truth for the real data

218 Chapter 7. Evaluation of SynOpSis for PAMONO

Table 7.4: Objectives and Measures for Real Sensor Data – Numerical Representation. This
table provides a numerical representation of the analysis results for real sensor data as visualized
in Figure 7.12b. Rows refer to experiments and folds of cross-validation, except for the rows
marked with ‘MAE’ in the ‘Fold’-column. These rows report the Mean Absolute Error incurred
when using test set performance, as displayed in Figure 7.12a, as a prediction for performance on
real sensor data, cf. Section 7.5.6. In this context, the ‘D-Diff’-column resolves by fold the errors
made in estimating D-Rate. All other columns refer to the objectives and measures described in
Section 7.3.1.

Experiment Fold Pr
eci
sio
n

D

Re
ca
ll

D

M-
Ra
te

Pr
eci
sio
n

C

Re
ca
ll

C

D-
Ra
te

D-
Di
ff

200 nm HQ

1 0.97484 0.88068 0.01935 0.97531 1.00000 -0.07955 -0.06044
2 0.97256 0.90625 0.03135 0.97337 1.00000 -0.03977 0.07679
3 0.93417 0.84659 0.01678 0.93498 1.00000 -0.08239 -0.01660

MAE 0.03485 0.07249 0.02871 0.03408 0.00000 0.05128

200 nm MQ

1 0.92879 0.90090 0.04000 0.93072 0.99677 -0.00300 -0.00300
2 0.89508 0.81982 0.01099 0.89610 1.00000 -0.07508 0.04120
3 0.89080 0.93093 0.05806 0.94721 0.99691 0.02402 0.04755

MAE 0.15717 0.04998 0.08471 0.06021 0.02386 0.03059

200 nm LQ

1 0.93976 0.83871 0.03846 0.94186 1.00000 -0.07527 -0.02649
2 0.20513 0.86022 0.07500 0.88764 0.91860 -0.04301 0.12366
3 0.58974 0.74194 0.04348 0.89873 0.98611 -0.15054 -0.07302

MAE 0.18002 0.11982 0.09950 0.08779 0.03585 0.07439

200 nm Gpy

1 0.86139 0.89231 0.05747 0.90052 0.94505 -0.02051 0.10449
2 0.83920 0.85641 0.05988 0.84466 0.98864 0.05641 0.09808
3 0.73684 0.86154 0.08333 0.81818 0.93956 0.07179 -0.02765

MAE 0.14003 0.07815 0.05092 0.12377 0.02351 0.07674

100 nm HQ

1 0.85185 0.58974 0.02609 0.85714 0.96610 -0.31795 -0.23437
2 0.25758 0.78462 0.02614 0.85119 0.91083 -0.13846 -0.00815
3 0.74257 0.76923 0.04000 0.90210 0.82692 -0.26667 -0.22756

MAE 0.15277 0.21449 0.08323 0.10625 0.06506 0.15669

100 nm LQ

1 0.32515 0.94643 0.13208 0.75676 0.93333 0.32143 0.47019
2 0.13576 0.73214 0.12195 0.75000 0.91304 0.00000 0.17647
3 0.35948 0.98214 0.01818 0.80000 0.85714 0.07143 -0.71730

MAE 0.40075 0.08924 0.13178 0.25576 0.06695 0.45465

is usually unavailable, and analysis quality can only be estimated from the synthetic data, for
which ground truth is available. In order to do so, the untouched test dataset is kept aside for
performance estimation, as described abstractly in Section 3.9, and concretely for PAMONO
in Section 7.3.4. Now this section evaluates the quality of the performance estimates obtained
by using objectives and measures attained on the test dataset as predictions for the (usually
unknown) actual values on the real sensor data.

Let pi denote the prediction for a certain objective or measure, i.e. the value it attains on
the test dataset, as displayed in Figure 7.12a. Subscript i indicates the fold of cross-validation

7.5. Optimization Options and Final Analysis Results 219

in which pi was computed. Furthermore, let ai denote the corresponding actual value for
the real sensor data, as displayed in Figure 7.12b and Table 7.4, respectively. Then the
error incurred in fold i in the prediction of that objective or measure is ai − pi, where a
negative/positive sign indicates an over-/underestimation of the predicted quantity. Since
D-Rate is an important summary measure of analysis quality, individual differences of the
type ai − pi are reported for it, cf. the ‘D-Diff’-column of Table 7.4, where D-Diff is an
abbreviation of D-Rate Difference. Therefore, this column quantifies per fold the error
incurred by predicting D-Rate on real sensor data, which is unknown in practice, as equal
to D-Rate on test data. These signed errors in performance estimates range from −71.730%
to +47.019% by which the number of ground truth nano-objects in the real sensor data is
over- and underestimated, respectively. Both extremes arise for the most difficult-to-analyze
experiment 100 nm LQ. Regarding the 200 nm experiments only, errors range from −7.302%
to +12.366%.

In order to summarize prediction errors over folds, an additional row, marked with ‘MAE’,
is provided per experiment in Table 7.4. For each objective and measure from Section 7.3.1,
it tabulates the Mean Absolute Error (MAE) over folds, incurred by the respective prediction.
As three folds are conducted, the MAE in this special case is defined as:

∣a1 − p1∣ + ∣a2 − p2∣ + ∣a3 − p3∣
3

. (7.7)

Generally speaking, the ‘MAE’-rows in Table 7.4 can be interpreted as follows: If for a certain
objective or measure, the value in the ‘MAE’-row is small compared to the values in the
three rows above, this indicates that the values on the test sets are good predictors for those
attained on real data for the considered objective or measure. Conversely, a comparably large
value in the ‘MAE’-row indicates low quality predictions. Examining Table 7.4 reveals that
MAE magnitudes, and thus prediction qualities, vary considerably by experiment, with the
more easily-to-analyze 200 nm experiments also being more easily-to-predict. Furthermore,
predictions for the four objectives, i.e. RecallD, M-Rate, PrecisionC and RecallC, exhibit
lower MAE than those for measures not used as objectives, i.e. PrecisionD and D-Rate.

With regards to the summary measure D-Rate, which was already discussed in the context
of the ‘D-Diff’-column, taking the mean over the three folds of cross-validation gives slight
improvements: The largest mean absolute estimation error amounts to 45.465%, again on
experiment 100 nm LQ. Regarding only 200 nm experiments, MAE ranges from 3.059% to
7.674%. As a conclusion, independent of whether or not mean values over cross-validation
results are taken, performance estimation provides useful results for 200 nm experiments,
while the quality of performance estimates for 100 nm experiments needs improvement to be
serviceable in practice.

7.5.7 Specificity of Final Analysis Results

Optimizing RecallD, i.e. sensitivity of the detector, while putting the classifier alone in charge
of specificity, raises the question of specificity in the overall analysis results. This question is
to be investigated here by running the Application stage on real sensor data that does not
contain any nano-objects. Hence any detector response is a False Positive (FP) of the detector.
Now the Specificity measure8 [Pow11] quantifies how well the classifier can sort out those

8Details concerning the Specificity measure can be found in Appendix A.

220 Chapter 7. Evaluation of SynOpSis for PAMONO

detector FPs by classifying them as negatives, making them True Negatives (TNs) of the
classifier. Hence, in this context, Specificity is defined solely with respect to the entries of the
classifier confusion matrix (cf. Table 3.2). It measures the ratio between TN classifications
and all actually negative examples to be classified:

Specificity = TN
TN + FP

. (7.8)

Results of measuring Specificity are reported in Table 7.5. They were obtained using the same
parameters per PAMONO experiment as were used for the final analysis results in Table 7.4.
The respective employed classifying model was the same as well, i.e. the model learned from
the union of the ground truth-labeled detector results for the training, validation and test
datasets, cf. Section 7.3.5.

Table 7.5 reports the results per experiment and fold of cross-validation. FPs incurred by
the detector are tabulated as absolute numbers in the ‘FP’-column and as relative densities
in the ‘FP per px3’-column. The latter normalize the former by the number of pixels in
the respective nano-objects-free spatiotemporal input volume. These two columns are also
given for the classifier, thus tabulating the absolute numbers and relative densities of FPs
remaining after classification. Finally, the ‘Specificity’-column of the classifier tabulates the
relative amount of FP detector responses that could be sorted out by the classifier. It can
be derived as according to Equation (7.8) from the detector and classifier ‘FP’-columns:
The total number of actually negative examples in the denominator of Equation (7.8) is
equal to the number of FP detector responses. The number of TN classifications in the
numerator of Equation (7.8) is the difference between all actually negative examples in the
denominator and the FP classifications. As an example, for fold one of experiment 100 nm
HQ, Specificity = 10−2

10 = 0.8.
In examining the numbers in Table 7.5, perfect Specificity can be observed over all folds

in experiments 200 nm HQ and 200 nm Gpy. In the former, this is due to zero FP responses
in the detector rendering classification unnecessary, while in the latter, FP responses occur,
but they can all be sorted out by the classifier. Two folds in the 200 nm experiments do not
produce perfect Specificity, but the number of FP responses is reduced from 77 to one, and
from 245 to two, respectively. On the 100 nm experiments, FP detector responses ranging
from nine to 984 are encountered, which are reduced to numbers between zero and 15 by the
classifier. These numbers of remaining FPs after classification are small enough to allow for a
fast visual inspection by a human expert. The lowest occurring Specificity is 0.8 in fold one
of the 100 nm HQ experiment. However, its absolute number of FPs after classification is
two, and the low value of Specificity is due to the overall small number of ten FP detector
responses. FP densities before classification range from zero to 1.39130 ⋅10−6, and the classifier
reduces this to a range from zero to 4.90196 ⋅ 10−8, with all but one case exhibiting a density
below 8.5 ⋅ 10−9, and eleven out of 18 cases with a perfect Specificity of one. Among the
200 nm experiments, ten out of twelve cases exhibit Specificity one.

7.5.8 Computation Time

As a sensor technique, PAMONO enables detection of nano-objects in real-time, while they
attach to the sensor surface. Hence a vital goal in developing an automated analysis process
for PAMONO data is retaining this real-time capability in the analysis, while providing
a real-time preview of processed sensor images to the operator. In order to demonstrate

7.5. Optimization Options and Final Analysis Results 221

Table 7.5: Specificity with Respect to Nano-Object-Free Sensor Data. For all experiments and
folds from Table 7.4, the Application stage of SynOpSis was additionally run on real sensor data
that was recorded before any nano-objects were inserted into the flow cell of the sensor. The
same parameters and classifying models as before were used. This enables assessing Specificity of
the results: The ‘FP’-column of the detector tabulates the absolute number of spurious detector
responses, while its ‘FP per px3’-column normalizes this number by the number of pixels in the
nano-object-free spatiotemporal input volume. The same columns are also given for the classifier
results, and the ‘Specificity’-column reports the relative amount of FP detector responses that
could be eliminated by the classifier. Eleven out of 18 cases attain perfect Specificity of one.
Among the 200 nm experiments ten out of twelve cases exhibit Specificity one.

Detector Classifier
Experiment Fold FP FP per px3 FP FP per px3 Specificity

200 nm HQ
1 0 0 0 0 1
2 0 0 0 0 1
3 0 0 0 0 1

200 nm MQ
1 1 5.30594 ⋅ 10−9 0 0 1
2 1 5.30594 ⋅ 10−9 0 0 1
3 77 4.08557 ⋅ 10−7 1 5.30594 ⋅ 10−9 0.98701

200 nm LQ
1 0 0 0 0 1
2 245 1.03900 ⋅ 10−6 2 8.48162 ⋅ 10−9 0.99184
3 54 2.29004 ⋅ 10−7 0 0 1

200 nm Gpy
1 15 4.68915 ⋅ 10−8 0 0 1
2 19 5.93959 ⋅ 10−8 0 0 1
3 36 1.12540 ⋅ 10−7 0 0 1

100 nm HQ
1 10 1.41393 ⋅ 10−8 2 2.82785 ⋅ 10−9 0.8
2 984 1.39130 ⋅ 10−6 1 1.41393 ⋅ 10−9 0.99898
3 176 2.48851 ⋅ 10−7 2 2.82785 ⋅ 10−9 0.98864

100 nm LQ
1 9 2.94118 ⋅ 10−8 0 0 1
2 369 1.20588 ⋅ 10−6 1 3.26797 ⋅ 10−9 0.99729
3 394 1.28758 ⋅ 10−6 15 4.90196 ⋅ 10−8 0.96193

real-time capability of the Application stage of SynOpSis, the Frames per Second (FPS) it can
process were measured for the experiments from Table 7.1, using the hardware from System
Specification 7.1. Note that all times reported in this section relate to optimization mode
Global 4 and desirability mode Scalarizing, i.e. to the modes determined in Section 7.5.4 and
already examined in Sections 7.5.5 to 7.5.7.

Frames per Second (FPS) and Real-Time-Capability

Table 7.6 shows the results of measuring computation times. The ‘FPS’-column refers to the
average number of PAMONO images that can be processed per second, given the resolution
in the first two dimensions of the ‘Training Vol. (px3)’-column. Image sizes in the training
datasets are the same as in the real sensor data, and only the size of the temporal dimension

222 Chapter 7. Evaluation of SynOpSis for PAMONO

Table 7.6: Computation Times. Computation times of different types are shown per experiment. The
‘FPS’-column (Frames per Second) tabulates the number of PAMONO images that can be processed
per second during the Application stage of SynOpSis. The ‘fe’-column divides FPS by the number
of images recorded per second (cf. Table 7.1), thus giving the factor of excess-speed attained
by the Application stage. The ‘Training Vol. (px3)’-column lists the sizes of the spatiotemporal
volumes used as training data in the Optimization stage. Evaluating one individual on the training
dataset during optimization takes the number of seconds displayed in the ‘Eval. (s)’-column, while
the number of hours taken for the overall optimization is tabulated in the ‘Opt. (h)’-column.

Experiment FPS fe Training Vol. (px3) Eval. (s) Opt. (h)
200 nm HQ 64.36249 3.21812 1080 × 145 × 666 23.80570 16.53174
200 nm MQ 98.04402 4.90220 742 × 127 × 666 18.03593 12.52495
200 nm LQ 83.74859 4.18743 706 × 167 × 666 21.48633 14.92108
200 nm Gpy 34.32416 2.28828 1024 × 270 × 385 25.33500 17.59376
100 nm HQ 59.72236 1.49306 750 × 230 × 1366 46.25623 32.12238
100 nm LQ 129.04058 3.22601 450 × 170 × 1333 27.67687 19.22004

varies. Processing one image means that the detector is applied to it, and that the classifier
in terms of the Random Forest classifying model is evaluated for the output of the detector.
The classifying model is known ahead (cf. Section 7.3.5) and applied in real-time on the
GPU [Lib15b]. Each entry in this ‘FPS’-column tabulating analysis speed is larger than
the corresponding entry for recording speed, given in the ‘FPS’-column of Table 7.1. To
simplify interpretation, the ‘fe’-column tabulates the factor by which analysis speed exceeds
recording speed: It ranges from 1.49306 for the 100 nm HQ experiment to 4.90220 for the
200 nm MQ experiment. Hence, real-time capability of the Application stage of SynOpSis
has been demonstrated for the examined experiments, with a safety-margin starting at an
excess-speed factor of approximately 1.5.

Optimization Time

A high speed analysis process is not only vital for real-time PAMONO data analysis in the
Application stage of SynOpSis, but it also accelerates the Optimization stage. The ‘Eval.
(s)’-column in Table 7.6 tabulates the time taken to evaluate one individual on the training
dataset, the size of which is listed in the ‘Training Vol. (px3)’-column. Evaluation times
include all overheads arising from writing and parsing the text files containing detector results,
matching these results to the ground truth and conducting five-fold cross-validation of the
Random Forest classifier with the parameter set to be evaluated, cf. Section 7.3.4. Learning
the Random Forest classifying models involved in this cross-validation takes place on the
CPU. Due to these overheads, evaluation times are not comparable with the times reported
in the ‘FPS’-column. Evaluation times were averaged over the 2500 individuals examined in
the Optimization stage, cf. the configuration of the GA in Section 7.3.2. Times ranging from
18 s to 46 s per average individual can be observed, exhibiting approximate proportionality to
the size of the spatiotemporal volume used for training. The ‘Opt. (h)’-column complements
individual times by reporting the accumulated time required for running the Optimization
stage, i.e. it multiplies evaluation times by the 2500 individuals and presents the result in
hours. Optimization times range from 12 h to 32 h.

7.6. Parameter Choices of the Optimization Stage 223

7.6 Parameter Choices of the Optimization Stage

In the previous section, results of applying SynOpSis for PAMONO data analysis were
reported in terms of the objective function values attained after optimization. The focus of
those evaluations was hence on how the parameters selected for being the most desirable ones
perform in objective space. In this section, the focus is shifted in two ways: In addition to the
desirable parameters, all parameters on the Pareto front are regarded, i.e. all non-dominated
individuals from the optimization. Furthermore, these individuals are no longer examined in
objective space, but in parameter space, allowing to draw conclusions about what parameter
values make a good individual. This is the topic of Section 7.6.1. While that section takes
the viewpoint of analyzing the parameter values observed in optimizations already conducted,
Section 7.6.2 takes the idea one step further by taking a viewpoint of prediction: The
systematics between parameter space values and objective space values are investigated by
predicting the latter from the former. In order to do so, the pool of examined data is extended
further, to also encompass the dominated individuals. On this basis, regression functions,
mapping from parameter- to objective space are computed to predict objective values for
arbitrary parameter values. The quality of these predictions is evaluated in a cross-validation
[Koh95].

Employed Data

For the two tasks described above, it is beneficial to use as much data as is available. Therefore,
in contrast to the second half of Section 7.5, the considered optimization- and desirability
modes are no longer restricted to Global 4 and Scalarizing. The focus is shifted to having a
large number of tuples of parameter- and objective vectors, while the modes in which these
were obtained are no longer relevant. However, one exception is the Sequential optimization
mode: It first optimizes detector parameters and then, with a single set of detector parameters
fixed, it optimizes classifier parameters. Therefore, all but one detector parameter set are
associated with no classifier parameter set, and all classifier parameter sets are associated
with the same single detector parameter set. Hence, to ensure a bijective correspondence
between detector and classifier parameter sets, the analysis in this section regards only
the results of global optimizations, i.e. of optimization modes Global 4 and Global 3 , cf.
Terminology 7.2. Global optimizations ensure bijective correspondence between detector
and classifier parameter sets because both are optimized simultaneously. Aside from this
restriction, all available data is used, i.e. data from all experiments, desirability modes and
folds.

7.6.1 Examining Pareto Fronts in Parameter Space

In this section, the most desirable parameter sets, i.e. those finally chosen by model selection,
are regarded in parameter space, thus complementing their evaluation in objective space, as
conducted in Section 7.5. In conjunction with the desirable parameter sets, the parameter
sets on the Pareto fronts are regarded as well. This investigation serves to gain insight into
which parameter values are desirable or non-dominated, allowing to conclude what makes a
good parameter set. In particular, the algorithms and combinations thereof that perform
best in analyzing PAMONO sensor data can be identified.

224 Chapter 7. Evaluation of SynOpSis for PAMONO

Content of Parameter Histograms

The primary tool in this investigation is histograms over parameter values. Taking Figure 7.13
as an example, the histograms therein plot values observed in parameters for background
elimination in the detector, cf. Section 5.2. Values observed in individuals on the Pareto
front are plotted in blue, while those observed in desirable individuals, i.e. in those finally
selected, are overlaid in semi-transparent red. All histograms are normalized as probabilities,
i.e. the bars in the red and blue histograms each sum to unit area. This normalization serves
to equalize the difference in numbers between individuals on the Pareto front and those
selected as desirable: The total number of parameter sets over all Pareto fronts was 3981,
after removal of duplicates, which prevents them from voting multiple times for the same
parameter values. The total number of desirable parameter sets was 108, resulting from six
experiments, two considered global optimization modes, three desirability modes and three
folds, with each optimization contributing the single finally selected parameter set.

Parameter histograms are pooled into topical groups: Each processing module of the
detector in Figure 5.1 is treated in a separate figure, as well as the Random Forest-based version
of the classifier in Figure 6.1. For each such figure, binary parameters are treated differently
from the other parameters: As an example, the binary parameter bbg in Figure 7.13a votes
by majority for median-based background elimination. Then for all other parameters in this
processing module, in this case for the lengths wρ and wφ of the employed temporal windows
in (b) and (c), the histograms are regarded only over those individuals where the binary
parameter bbg was set to use the median. Hence the non-binary parameters are restricted to
the cases deemed relevant by the binary ones. Parameters related to methods deactivated
by binary parameters in the same processing module are omitted from the discussion. Note
that processing modules are treated independently of each other: As an example, if a certain
binary value was chosen for the background elimination module, histograms for the denoising
module are not influenced by this decision, but again all individuals are regarded, i.e. binary
decisions for previous modules are not propagated to later modules. Note that while not being
captured by this type of histograms, there exists the possibility of more complex parameter
interactions: As an example, denoising parameters and thresholds in time series classification
can interact because stronger smoothing during denoising causes stronger smearing of peak
intensities, thus requiring smaller thresholds.

Interpretation of Parameter Histograms

A general remark on how to interpret the parameter histograms to be discussed throughout
this section is that conclusions can only be drawn from histograms with low entropy. If a
histogram has high entropy, i.e. if its distribution is rather uniform, one can not conclude
whether this is due to the parameter being irrelevant, thus requiring no optimization, or
whether rather diverse values of this parameter are required to give good analysis results,
thus voting for optimizing that parameter. The only information in such histograms is that
all values of a parameter are about equally frequent in good individuals. In contrast to that,
parameter histograms with low entropy, i.e. those indicating a tendency of agglomeration
around certain parameter values, vote for looking at those values first during search. Given this
general remark on histogram interpretation, detailed discussions of the parameter histograms
per processing module will be provided now.

7.6. Parameter Choices of the Optimization Stage 225

Avg Med
0

0.2

0.4

0.6

0.8

1

1.2

R
at

io

Front
Desirable

(a) bbg
5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

R
at

io

Front
Desirable

(b) wρ
5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

R
at

io

Front
Desirable

(c) wφ

Figure 7.13: Background Elimination Parameter Histograms. The semantics of these parameters is
explained in Section 5.2.4, and an analysis of the histograms is provided in the text.

(0,0,0,0) (0,0,0,1) (0,1,0,0) (0,1,0,1) (0,1,1,0) (0,1,1,1) (1,0,0,0) (1,0,0,1) (1,0,1,1) (1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,1)
0

0.1

0.2

0.3

0.4

R
at

io

Front
Desirable

(a) (bdenoise
avg , bdenoise

Gauß , bdenoise
med , bdenoise

fuzzy)

2 2.5 3
0

0.05

0.1

0.15

R
at

io

Front
Desirable

(b) σGauß

O, On
0

0.2

0.4

0.6

0.8

1

R
at

io

Front
Desirable

(c) bdenoise
bright

O, On
0

0.2

0.4

0.6
R
at

io

Front
Desirable

(d) bdenoise
spill

Figure 7.14: Denoising Parameter Histograms. The semantics of these parameters is explained in
Section 5.3.4, and an analysis of the histograms is provided in the text. Binary vectors in (a)
represent the following binary parameters in the order given here: (bdenoise

avg bdenoise
Gauß bdenoise

med bdenoise
fuzzy).

Parameters of methods deactivated by the majority vote on the binary parameters in (a) are
not shown.

Background Elimination

Figure 7.13 shows histograms over parameters of the background elimination module, as
explained in Section 5.2.4. The vote for aggregating past and present estimates via the median
over time is very clear in (a), for both, front- and desirable individuals. The lengths of the
temporal windows over which the past (b) and present (c) are aggregated in the median-based
parameter sets tend to agglomerate on the lower end, voting for rather short windows in
both, with past windows being slightly longer.

226 Chapter 7. Evaluation of SynOpSis for PAMONO

10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

R
at

io

Front
Desirable

(a) T
0.02 0.04 0.06 0.08

0

0.05

0.1

0.15

0.2

0.25

0.3

R
at

io

Front
Desirable

(b) h1

0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

R
at

io

Front
Desirable

(c) h2

Hard Soft
0

0.2

0.4

0.6

0.8

1

R
at

io

Front
Desirable

(d) bclassify
fuzzy

0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

R
at

io

Front
Desirable

(e) s2

Figure 7.15: Time Series Classification Parameter Histograms. The semantics of these parameters is
explained in Section 5.4.4, and an analysis of the histograms is provided in the text. Parameters
of soft thresholding are not shown because this method is deactivated by the majority vote on
the binary parameter in (d).

Denoising

Figure 7.14 shows histograms over parameters of the denoising module, as explained in
Section 5.3.4. The most frequently occurring types of denoising methods are Gaussian
smoothing alone, or in combination with averaging. The proportion of front individuals
voting for Gaussian smoothing alone slightly exceeds that of desirable individuals voting for
the combination with averaging. Therefore, (b)–(d) show histograms solely over individuals
employing Gaussian smoothing alone. Smoothing kernel sizes in (b) are chosen primarily
about the center of the examined range, and less so from the more extreme values. This
indicates that the examined range is large enough and thus can provide the amount of
smoothing required for the examined experiments. Among the application-specific denoising
heuristics, brightness correction is enabled in the majority of cases for both, front and desirable
individuals (c), whereas no conclusions can be drawn from the histogram concerning pixel
overspilling compensation (d). Settling this parameter choice would require re-evaluating all
individuals with the contrary choice in this parameter, while all other parameters are left
unchanged, followed by comparing the obtained objective values to the original ones.

Time Series Classification

Figure 7.15 shows histograms over parameters of the time series classification module, as
explained in Section 5.4.4. Concerning time series preselection parameters in (a)–(c), a
tendency for smaller temporal windows within which time series are matched and classified
can be determined from (a). The threshold determining the minimum required magnitude
in time series intensity-differences agglomerates on the lower end of the examined range
(b). Nearly no individuals with lower thresholds in the upper half of the interval occur in

7.6. Parameter Choices of the Optimization Stage 227

(0,0) (0,1) (1,0) (1,1)
0

0.1

0.2

0.3

0.4

0.5
R
at

io
Front
Desirable

(a) (bopening, bclosing
)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

R
at

io

Front
Desirable

(b) Kclosing
radius

4 6 8 10
0

0.05

0.1

0.15

R
at

io

Front
Desirable

(c) Kmerge
X,Y

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

R
at

io

Front
Desirable

(d) Kmerge
T

Figure 7.16: Segmentation Parameter Histograms. The semantics of these parameters is explained
in Section 5.6.4, and an analysis of the histograms is provided in the text. Binary vectors in
(a) represent the following binary parameters in the order given here: (bopening, bclosing

). The
radius parameter of morphological opening is not shown because opening was deactivated by
the majority vote on the binary parameters in (a).

front and desirable individuals. The vote for an upper threshold is less clear (c): Values are
approximately uniformly distributed throughout the examined range, with a slight decrease
in the interval overlapping with that in (b). One possible explanation for the high entropy in
(c) is that an upper threshold on time series magnitude is irrelevant, which is backed by the
fact that over the examined experiments, artifacts were rarely brighter than nano-objects.
Hence nothing is to be gained from imposing an upper threshold.

The bottom part of Figure 7.15 is concerned with time series classification based on
matching scores. A rather clear vote for hard thresholding of matching scores can be seen in
(d). The distribution of the employed hard thresholds in (e) is skewed toward requiring lower
matching scores, which can be due either to the low SNR in the data decreasing matching
scores, or to well-performing time series preselection making structural matching scores less
relevant. Both causes can apply, and they can vary by experiment.

Segmentation

Figure 7.16 shows histograms over parameters of the segmentation module, as explained in
Section 5.6.4. Binary switches enabling morphological opening and closing are examined in
(a). While both, front and desirable individuals vote for applying solely closing, the vote
is clearer in the desirable than in the front individuals. An intuition behind the success of
closing can be gained from comparing the effects of morphological operators in Figure 5.11.

228 Chapter 7. Evaluation of SynOpSis for PAMONO

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

R
at

io

Front
Desirable

(a) K
100 200 300 400

0

0.02

0.04

0.06

0.08

0.1

R
at

io

Front
Desirable

(b) I
0 5 10 15 20

0

0.05

0.1

0.15

R
at

io

Front
Desirable

(c) D

Figure 7.17: Random Forest Classifier Parameter Histograms. The semantics of these parameters
is explained in Section 6.8, and an analysis of the histograms is provided in the text.

A parameter histogram for the radius of the structuring element used in closing is given in
(b), voting for larger structuring elements with radii three or four.

The bottom row of Figure 7.16 is concerned with spatiotemporal clustering of polygons,
which like morphological operators primarily affects the M-Rate objective. The histogram
over the spatial radius within which multiple polygons are merged to a single detector response
is skewed in the direction of larger values (c), hinting at a range of examined values that was
too small on the upper end. Improvements in M-Rate can possibly be achieved by increasing
the upper boundary of the interval examined for this parameter. Conversely, the examined
range for the temporal radius of polygon clustering can be reduced (d): The vast majority of
individuals agglomerates in the lower half of the range, offering a possibility for pruning the
search space in future optimizations.

Random Forest Classifier

Figure 7.17 shows histograms over parameters of the Random Forest classifier, as explained in
Section 6.8. Neither the number of features available for splitting at the inner nodes of trees
(a), nor the number of trees in the forest (b), nor maximum allowed depth of the trees (c)
clearly vote for a sweet spot. This agrees with the relative robustness of the Random Forest
learner concerning parameter choices, as discussed in more detail at the end of Section 6.6.3.
Not even the parameter K which trades off correlation between-, versus predictive strength
of-, the individual trees makes a clear vote for certain values. Determining whether this
means that the Random Forest parameters are negligible in optimization or simply uniformly
distributed in front and desirable individuals could be conducted with respect to the results
of the Sequential optimization mode: In the second optimization that is concerned solely with
the classifier, one could track classifier objectives over parameters and compute their variation.
If this variation is tolerable in analysis results, Random Forest parameters can simply be
set to default values [Bre01; HTF09]. Note however, that in global optimization modes no
acceleration is to be gained from this because classifier objectives have to be evaluated anew
for each individual anyways. Whether this is done with fixed or variable Random Forest
parameters is not of importance if these parameters only have small a small impact on the
classifier performance of the individual.

7.6. Parameter Choices of the Optimization Stage 229

7.6.2 Modeling Parameter Set Quality in Objective Space

After the previous section examined the front and desirable individuals in parameter space
to identify systematics in what makes good parameter sets, this section takes the idea
of investigating these systematics one step further. Instead of analyzing the parameter
space representation of good individuals over optimizations already conducted, a predictive
viewpoint is taken here: Objective values for unseen parameter sets are to be predicted
by a regression model, thus exploring the systematics between parameter and objective
values in a prospective way. This can be exploited in accelerating optimization, which
motivates this preliminary investigation: As summarized in Section 3.3, meta-models [BLP10;
KKF+11; HHL11; BBB+11; BMT+12] of response surfaces over parameter space can be
computed. Each such meta-model predicts the behavior of one objective over parameter
space. Meta-models can be used as cheaper-to-evaluate and faster-to-search surrogates for
the actual objective functions, cf. [HHL11] for an according approach. The success and utility
of meta-modeling increases with increasing predictability of objective values over parameter
space, therefore the investigation in this section examines how well regression models perform
in that prediction task.

Regression Method

Random Forest regression [Bre01] was selected as the learning algorithm to be used because
it can handle the mixed numerical and categorical values arising in the examined parameter
space. As this is a supervised method, the input consists of tuples of parameter vectors,
labeled with their associated objective vectors. The labeled tuples were recorded over all runs
of the Optimization stage, except for those with optimization mode Sequential, for the reason
discussed at the beginning of Section 7.6. Note that in contrast to Section 7.6.1, not only
the front and desirable but all individuals created during the optimizations are considered
because the prediction model should also be capable of predicting, which combinations of
parameter values are likely to be dominated, so it can avoid searching in such regions. The
output of this regression is a mapping from parameter to objective space, evaluable at any
point of parameter space and predicting the associated values in objective space. As the
labeled data points may reside at arbitrary locations in parameter space, and as their objective
values are not necessarily interpolated by the resulting regression model, this can be regarded
as a scattered data approximation. For multidimensional objective spaces, multiple scalar
regression models can be computed, as will be done here.

For each objective, a Random Forest regression model using 100 trees with no limit on
tree depth is computed. The number of variables from which the function value is predicted
is 31, consisting of the 28 parameters of the detector (cf. Section 5.7) plus three parameters of
the Random Forest-based classifier (Section 6.8). The Random Forest used for regression may
select from ⌊

√
31⌋ = 5 variables at each node, following Breiman’s recommendation [Bre01]

discussed in Section 6.6.3. In order to avoid undue optimism, this process is conducted within
a ten-fold cross-validation [Koh95], cf. Section 3.9.1.

Histograms of Objectives

Before predictability of objectives is assessed in terms of the regression errors incurred in
this cross-validation, the behavior of the objective functions is examined in their co-domain.

230 Chapter 7. Evaluation of SynOpSis for PAMONO

0 0.2 0.4 0.6 0.8 1
100

102

104

106

Evaluated
Terminated

(a) RecallD
0 2 4 6 8 10

100

102

104

106

Evaluated
Terminated

(b) M-Rate
0 0.2 0.4 0.6 0.8 1

100

102

104

106

Evaluated
Terminated

(c) PrecisionC

0 0.2 0.4 0.6 0.8 1
100

102

104

106

Evaluated
Terminated

(d) RecallC
0 0.2 0.4 0.6 0.8 1

100

102

104

106

Evaluated
Terminated

(e) ∆(y)

Figure 7.18: Histograms over Objectives and Desirability Index (DI). Observation frequencies of
objective- and DI-values are displayed as histograms with logarithmic vertical axes. The
histograms differentiate between values attained by regularly evaluated (blue) and terminated
individuals (semi-transparent red). The latter are due to an early cancellation criterion
(cf. Section 5.8) and are assigned the worst objective values observed over the evaluated
individuals. In total, values of 270000 individuals are displayed in each histogram, among which
approximately one third was terminated.

To this end, Figure 7.18 displays histograms of the functions to be modeled, with objective
values on the horizontal axis and the logarithmic number of observations on the vertical.
For parameter sets where the early termination criterion during matching was fulfilled (cf.
Section 5.8), the function value was set to the worst value observed over the rest of the
data. For example, in the case of M-Rate, it was set to the largest value of M-Rate attained
by any other parameter set. In order to distinguish terminated from regularly evaluated
individuals, the former are indicated by semi-transparent red bars in the histogram. The
number of terminated points is 90185 and thus approximately one third of the total set of
270000 labeled input examples. This number arises from the combination of six experiments,
two global optimization modes, three desirability modes and three folds of SynOpSis cross-
validation. Each of these combinations involves an optimization evaluating 2500 individuals
(cf. Section 7.3.2), thus giving the total number of data points.

RecallD in (a) is approximately evenly distributed between 0.2 and 0.6. Below 0.2 and
above 0.6 there are increases in observation frequencies, with the increase towards the higher
objective values being larger in this logarithmic plot. In the last bin before the perfect RecallD
of one, frequency drops, indicating that perfect RecallD is hard to attain, even on the training
data used by the Optimization stage.

7.6. Parameter Choices of the Optimization Stage 231

M-Rate in (b) is easier to perfect: The histogram looks approximately linear on a
logarithmic vertical axis, with observation frequencies increasing from the worst to the best
values of M-Rate. This means there is an exponential decrease in observation frequencies
with worsening objective values. Furthermore, the best bin including zero M-Rate breaks the
trend with an additional increase in observation frequency.

PrecisionC and RecallC in (c) and (d) show a very similar behavior, with an even more
pronounced increase in observation frequencies on the end of the best objective values.

Besides the raw objective values as summarized in (a)–(d), it is worthwhile to look at
the geometric mean DI ∆(y) of all objectives, cf. Equation (3.8). The reason is that it
summarizes all four objectives in a single scalar, while incorporating application preferences:
If the DI can be predicted well, a single meta-model suffices in accelerating optimizations
with desirability mode Scalarizing. In this task, predicting a single response surface might
furthermore be more exact than predicting four individual response surfaces, followed by
computing the DI of the result, which will be investigated in the following. The DI exhibits
the most intricate histogram, as shown in (e): Besides the 90185 terminated individuals,
another 26537 evaluated individuals fall into the bin with lowest ∆(y). A shape similar to
that of RecallD in (a) can be observed between the bin involving ∆(y) = 0.4 and the one with
∆(y) = 1. The drop in observation frequencies towards ∆(y) = 1 is inherited from RecallD
because no other objective exhibits a drop towards the most desirable value.

Regression Error: Measures and Results

After examining the distributions of objective values and DI, their predictability will be
investigated now by applying the regression method described above. Predictability will
be measured in terms of the mean regression errors incurred within the conducted ten-fold
cross-validation over the respective tuples of parameter- and objective space points.

Table 7.7 shows the mean regression errors in terms of the following measures: Firstly, the
Pearson Product-Moment Correlation Coefficient (PCC) quantifies the correlation between
actual function values a ∈ RN and their predictions p ∈ RN as

PCC(a,p) = cov (a,p)
σ (a)σ (p) , (7.9)

where cov (a,p) = 1
N−1 ∑

N
i=1(ai − µ (a))(pi − µ (p)) is the sample covariance. PCC resides in

[−1,1], where the extremes indicate negative and positive linear dependence, respectively,
and value zero is attained for variables with no correlation. Secondly, Mean Absolute Error
(MAE) is defined as

MAE(a,p) = 1
N

N

∑
i=1

∣ai − pi∣ . (7.10)

It resides on the same scale as its arguments. The same holds for Root Mean Squared Error
(RMSE), which is defined as

RMSE(a,p) =

¿
ÁÁÀ 1

N

N

∑
i=1

(ai − pi)2. (7.11)

Compared to MAE, RMSE responds more strongly to outliers. In order to give a reference
for the scale that MAE and RMSE reside on for the respective functions, the minimum and

232 Chapter 7. Evaluation of SynOpSis for PAMONO

Table 7.7: Regression Errors of Objectives and Desirability Index (DI). Regression errors of the
optimized objectives and the DI ∆(y) are reported in terms of Equations (7.9) to (7.11). The
topmost regression model was learned from ‘All’ training data, while the two models below were
learned from the highest/lowest quality experiments ‘200 nm HQ’ and ‘100 nm LQ’, respectively.
The minima and maxima reported in the ‘Range’-columns indicate the scales upon which the
errors in the ‘MAE’- and ‘RMSE’-columns reside. Higher PCC and lower MAE and RMSE
indicate higher predictability, which can be exploited in meta-modeling.

Regression Errors Range
Experiment Measure PCC MAE RMSE min max

All

RecallD 0.8794 0.1347 0.1971 0 1
M-Rate 0.8308 1.4776 2.2802 0 8.7059
PrecisionC 0.8348 0.1693 0.2607 0 1
RecallC 0.8337 0.1709 0.2591 0 1
∆(y) 0.8504 0.1585 0.2128 0 1

200 nm HQ

RecallD 0.8753 0.1550 0.2177 0 1
M-Rate 0.8242 1.5889 2.3509 0 8.7059
PrecisionC 0.8278 0.1814 0.2687 0 1
RecallC 0.8261 0.1833 0.2684 0 1
∆(y) 0.8528 0.1683 0.2252 0 1

100 nm LQ

RecallD 0.8574 0.1306 0.1901 0 1
M-Rate 0.7889 1.7897 2.5486 0 8.7059
PrecisionC 0.7942 0.2039 0.2894 0 1
RecallC 0.7917 0.2038 0.2868 0 1
∆(y) 0.8271 0.1545 0.2033 0 1

maximum values observed in the data are given in the rightmost columns of Table 7.7. This
is done for three kinds of input: In rows marked with ‘All’ in the ‘Experiment’-column, data
points from all six experiments are used, i.e. the full set of 270000 labeled input examples, as
discussed in the context of objective histograms above, is used. In order to sort out the impact
of mixing data points from different experiments, the rows marked with ‘200 nm HQ’ and
‘100 nm LQ’ in the ‘Experiment’-column, exclusively regard data points from the highest and
lowest quality experiment, respectively. Hence, they contain only a sixth of the data points
used in the ‘All’-rows. Note that the ‘Range’-columns remain constant over experiments,
making regression errors comparable.

One thing to note in Table 7.7 is that regression errors for RecallD are lowest, indicating
a higher degree of dependence between the parameter set and RecallD than for the other
objectives. The second lowest error is incurred by the DI, while the three remaining objectives
exhibit larger errors. In the context of using a meta-model in running the Optimization stage
with desirability mode Scalarizing, this suggests that it is better to use a single response
surface model for the DI directly, than using separate models per objective and computing the
DIs from predictions of its constituents. This bears the additional advantage of facilitating
search by making it scalar. Another point in Table 7.7 can be seen from comparing regression

7.7. Cross-Experiment Generalization Performance 233

errors between experiments: As expected, they decrease from the lowest quality experiment
100 nm LQ to the highest quality experiment 200 nm HQ, both of which are represented with
equal amounts of training data tuples. However, regression errors can be decreased further
by learning the regression model from all experiments simultaneously, increasing the amount
of training data tuples by factor six. Compared to regarding experiment 200 nm HQ alone,
this introduces exclusively tuples from lower quality experiments to the training data, but
the regression errors nevertheless decrease, as can be seen from comparing the values in the
‘200 nm HQ’-rows to those in the ‘All’-rows.

Conclusion

As investigated in this section, successful prediction of SynOpSis objectives, particularly of
the DI, by means of Random Forest regression is feasible: A correlation of 0.8504 between
predicted and actual DI was observed in a ten-fold cross-validation over all training data.
On an absolute scale, MAE = 0.1585 and RMSE = 0.2128 were attained in the co-domain of
the DI, which ranges from zero to one. Predictability of RecallD was slightly higher, while
that of the other three objectives was lower. Creating a regression model over optimizations
conducted for multiple experiments generally increased the prediction quality. This can be
exploited particularly in using meta-modeling as a method to aggregate knowledge gained
over multiple PAMONO sensor setups and experiments. Such an aggregate model can serve in
accelerating future optimizations for new experimental data. Furthermore, it can be used as a
container accumulating data on a central server within a distributed network of collaborating
PAMONO sensors [LKD+14]: Each node contributes its function evaluations to the model,
and during optimization it can benefit from the predictions generated by the model. Hence it
exploits the knowledge gathered by all collaborating nodes, while contributing its share to it.

7.7 Cross-Experiment Generalization Performance

In the final section of this evaluation, the generalization performance of parameter sets
and of classifying models is evaluated across the different PAMONO experiments from
Table 7.1. These two aspects are treated separately in the following: Firstly, the generalization
performance of parameter sets alone is examined, by analyzing each PAMONO experiment in
question with detector and classifier parameter sets optimized for one of the other experiments,
while the classifying model is learned from synthetic data belonging to the experiment to be
analyzed. A second investigation then additionally exchanges the data source from which
the classifying model is learned with synthetic data from all other experiments. Its goal is
answering the question of how much can be learned for a new experiment from examining
synthetic ground truth of previous experiments.

Cross-Experiment Generalization Performance of Parameter Sets

For the first investigation, which is concerned with the cross-experiment generalization
performance of parameter sets alone, the detailed test methodology is as follows: Detector
and classifier parameters optimized for each experiment in Table 7.1, are applied to all
other experiments, and to the original experiment as a baseline comparison. The remainder
of SynOpSis remains unchanged. In particular, the classifying model is learned from the

234 Chapter 7. Evaluation of SynOpSis for PAMONO

0.97 0.88 0.98 0.89 0.93 0.83 0.91

0.96 0.90 0.93 0.48 0.92 0.23 0.74

0.42 0.69 0.21 0.14 0.35 0.91 0.45

0.97 0.89 0.97 0.84 0.94 0.56 0.86

0.66 0.76 0.58 0.40 0.26 0.08 0.46

0.93 0.83 0.95 0.58 0.90 0.14 0.72

200
nm

H
Q

200
nm

M
Q

200
nm

LQ

200
nm

G
py

100
nm

H
Q

100
nm

LQ

µ
(|◦|)

Parameter Target

200
nm

H
Q200

nm
M
Q200

nm
LQ200

nm
G
py100

nm
H
Q100

nm
LQ

P
a
ra
m
et
er

S
o
u
rc
e

0.2

0.4

0.6

0.8

(a) PrecisionD

0.91 0.85 0.45 0.89 0.42 0.27 0.63

0.87 0.82 0.46 0.88 0.42 0.32 0.63

0.90 0.91 0.86 0.92 0.91 0.75 0.87

0.88 0.78 0.39 0.86 0.35 0.27 0.59

0.86 0.87 0.75 0.89 0.78 0.91 0.84

0.93 0.93 0.82 0.90 0.67 0.75 0.83

200
nm

H
Q

200
nm

M
Q

200
nm

LQ

200
nm

G
py

100
nm

H
Q

100
nm

LQ

µ
(|◦|)

Parameter Target

200
nm

H
Q200

nm
M
Q200

nm
LQ200

nm
G
py100

nm
H
Q100

nm
LQ

P
a
ra
m
et
er

S
o
u
rc
e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) RecallD

0.03 0.10 0.02 0.14 0.10 0.00 0.07

0.02 0.01 0.00 0.13 0.01 0.06 0.04

0.17 0.21 0.07 0.42 0.12 0.02 0.17

0.01 0.01 0.00 0.06 0.00 0.00 0.01

0.01 0.03 0.00 0.11 0.03 0.06 0.04

0.13 0.20 0.03 0.51 0.04 0.12 0.17

200
nm

H
Q

200
nm

M
Q

200
nm

LQ

200
nm

G
py

100
nm

H
Q

100
nm

LQ

µ
(|◦|)

Parameter Target

200
nm

H
Q200

nm
M
Q200

nm
LQ200

nm
G
py100

nm
H
Q100

nm
LQ

P
a
ra
m
et
er

S
o
u
rc
e

0

0.1

0.2

0.3

0.4

0.5

(c) M-Rate

0.97 0.89 0.98 0.91 0.94 0.83 0.92

0.96 0.90 0.93 0.82 0.92 0.65 0.86

0.95 0.90 0.88 0.57 0.78 0.95 0.84

0.97 0.89 0.97 0.84 0.94 0.56 0.86

0.99 0.93 0.96 0.87 0.86 0.72 0.89

0.98 0.89 0.96 0.87 0.93 0.77 0.90

200
nm

H
Q

200
nm

M
Q

200
nm

LQ

200
nm

G
py

100
nm

H
Q

100
nm

LQ

µ
(|◦|)

Parameter Target

200
nm

H
Q200

nm
M
Q200

nm
LQ200

nm
G
py100

nm
H
Q100

nm
LQ

P
a
ra
m
et
er

S
o
u
rc
e

0.6

0.7

0.8

0.9

(d) PrecisionC

1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 0.93 1.00 0.89 0.97

0.94 0.96 0.92 0.79 0.84 0.93 0.90

1.00 1.00 1.00 0.98 1.00 1.00 1.00

1.00 0.97 0.99 0.88 0.90 0.91 0.94

1.00 0.99 0.94 0.82 0.98 0.87 0.93

200
nm

H
Q

200
nm

M
Q

200
nm

LQ

200
nm

G
py

100
nm

H
Q

100
nm

LQ

µ
(|◦|)

Parameter Target

200
nm

H
Q200

nm
M
Q200

nm
LQ200

nm
G
py100

nm
H
Q100

nm
LQ

P
a
ra
m
et
er

S
o
u
rc
e

0.8

0.85

0.9

0.95

1

(e) RecallC

-0.04 0.05 -0.53 0.09 -0.51 -0.68 0.32

-0.08 -0.08 -0.51 0.11 -0.54 -0.54 0.31

0.04 0.18 -0.03 0.78 0.10 -0.25 0.23

-0.08 -0.11 -0.60 0.05 -0.63 -0.52 0.33

-0.13 -0.06 -0.23 -0.01 -0.15 0.21 0.13

0.08 0.24 -0.18 0.26 -0.27 -0.05 0.18

200
nm

H
Q

200
nm

M
Q

200
nm

LQ

200
nm

G
py

100
nm

H
Q

100
nm

LQ

µ
(|◦|)

Parameter Target

200
nm

H
Q200

nm
M
Q200

nm
LQ200

nm
G
py100

nm
H
Q100

nm
LQ

P
a
ra
m
et
er

S
o
u
rc
e

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(f) D-Rate

Figure 7.19: Cross-Experiment Generalization Performance – Parameters Sets. Parameter sets
optimized for the experiments indicated by the row names (‘Parameter Source’) are applied in
analyzing real sensor data from the experiments indicated by the column names (‘Parameter
Target’). Each matrix displays the values of a different objective or measure from Section 7.3.1.
Poorer values are marked by increasing saturation of the red color underlying matrix cells. This
property holds independently of whether an objective or measure is to be minimized (M-Rate),
brought to zero (D-Rate) or maximized (all other). The rightmost column displays the mean
absolute value of the six entries in the respective same row. It allows to quickly assess whether
parameters from the experiment in that row generalize well.

7.7. Cross-Experiment Generalization Performance 235

synthetic ground truth created for the original experiment, however on the basis of parameter
sets from a foreign experiment. In order to avoid combinatorial explosion, only parameter sets
obtained with optimization mode Global 4 and desirability mode Scalarizing are considered
(cf. Section 7.5.4) on a single fold of cross-validation, and only the results for real sensor data
are reported. The same six objectives and measures as before (cf. Section 7.3.1) are used to
assess results quality. However, instead of the box plots used in Section 7.5, objectives and
measures are shown in the form of the matrices in Figure 7.19, which are better suited for
displaying the exhaustive combinations of experiments in this context.

Generally speaking, the semantics of any matrix in Figure 7.19 is as follows: Each row
corresponds to the parameter source, i.e. to the experiment from which detector and classifier
parameters are taken. Each column corresponds to the parameter target, i.e. to the experiment
to which those parameters are applied. One exception to this rule is the ‘µ (∣○∣)’-column,
which shows the mean absolute value over all values neighboring to the left. It thus provides
a summary statistic enabling easy assessment of the average merit of parameters from the
experiment in the respective row for analyzing the experiments in all columns. Increasing
saturation of the red color underlying matrix cells marks values that are poor in relative
comparison to the other values in the regarded objective or measure. Here ‘poor’ means low
for objectives to be maximized, high for objectives to be minimized, and far away from zero
for D-Rate. Conversely, saturation decreases for better values. This coloring scheme enables
to quickly see the hot spots and to assess experiment properties: Red rows correspond to
experiments with parameters that do not generalize well in terms of the regarded objective
or measure. Red columns indicate experiments that can not be analyzed well by parameters
from other experiments.

PrecisionD as displayed in Figure 7.19a is the first measure to be regarded in detail. Values
range from 0.08 to 0.98, and the main diagonal reporting the cases of applying parameters
to the experiment they were originally optimized for nearly covers this entire range because
PrecisionD is not an objective in this optimization. Concerning generalization performance,
this result is indifferent and was reported for the sake of completeness only.

RecallD in Figure 7.19b, on the other hand, allows for a statement concerning generaliza-
tion performance. A prerequisite for this is the following observation: As values on the main
diagonal of the matrices in Figure 7.19 were attained for applying parameters to the experi-
ments they were originally optimized for, they can be used as a benchmark. Similarity of the
values on the main diagonal to those in any rows of the matrix indicate parameter sets with
good generalization performance. As an example, parameters optimized for the experiments
200 nm LQ, 100 nm HQ and 100 nm LQ generalize well in terms of RecallD: Values observed
for parameters from these experiment range from 0.67 to 0.93, while the overall range is 0.27
to 0.93, and the rightmost column with the mean values sets these experiments apart from the
others as well. While the parameters computed for these experiments generalize well to other
experiments (corresponding rows are rather white), these experiments are at the same time
the hardest to be analyzed with parameters from other experiments (corresponding columns
are rather red). Furthermore, these experiments exhibit the lowest minimum and median
SNRs, cf. Table 7.1. Hence, concerning RecallD, parameters optimized for difficult-to-analyze,
low SNR experiments were found to generalize well to other experiments, while parameters
optimized for the easier-to-analyze, higher SNR experiments failed to generalize to the lower
SNR experiments.

236 Chapter 7. Evaluation of SynOpSis for PAMONO

M-Rate in Figure 7.19c exhibits values between zero and 0.51, with all but two values
being below 0.22. For comparison, the largest value on the diagonal is 0.12. It is attained
by experiment 100 nm LQ, which along with 200 nm LQ exhibits the worst generalization
performance: Both corresponding rows exhibit an average M-Rate of 0.17. This is correlated
with a low SNR and good generalization performance in terms of RecallD, as observed in
both experiments. On the parameter target side, the 200 nm Gpy experiment is hardest
to analyze with parameters optimized for other experiments in terms of M-Rate: The
corresponding column contains the two worst outliers, 0.42 and 0.51. The increased tendency
of multiple detection of the same nano-object in experiment 200 nm Gpy is assumed to be
due to the different camera and resolution: One nano-object adhesion in 200 nm Gpy covers
approximately four times as many pixels as in other experiments. Hence there are four times
as many pixels for the detector to respond to, which would ideally all be merged into a single
detection. Using parameters optimized for smaller adhesions is likely to involve unsuitable
parameters for segmentation (cf. Section 5.6.4), in particular for merging spatiotemporally
adjacent detections in order to improve M-Rate.

PrecisionC in Figure 7.19d ranges from 0.56 to 0.99. The worst value on the diagonal
is 0.77, while the mean PrecisionC achieved by parameter sets ranges from 0.84 to 0.92, i.e.
differences are rather small. Parameters optimized for experiments 200 nm HQ and 100 nm
LQ generalize best in terms of mean PrecisionC. Experiments 200 nm HQ, 200 nm MQ and
200 nm LQ are most amenable to being analyzed with parameters from other experiments,
i.e. the corresponding columns exhibit comparably high values.

RecallC in Figure 7.19e ranges from 0.79 to one, with values from 0.87 to one on the
diagonal. Like with PrecisionC, experiments 200 nm HQ, 200 nm MQ and 200 nm LQ can
be analyzed well using other experiments as the parameter source. Applying parameters
from experiment 200 nm HQ or 200 nm Gpy in analyzing other experiments achieves higher
RecallC than on the diagonal, which is however to be viewed with skepticism as a classifying
model that predicts everything as positive trivially achieves Recall one. Parameters from
experiments 200 nm LQ, 100 nm HQ and 100 nm LQ generalize worse than the others, albeit
still achieving mean RecallC values of 0.90, 0.94 and 0.93, respectively.

Finally, D-Rate in Figure 7.19f summarizes these results by measuring the relative
deviation between the actual and reported number of nano-objects. This is of particular
utility because in the investigation above, parameters that were found to generalize well in
some objectives did not do so in others. D-Rate exhibits a large deviation between the matrix
diagonal, where parameter source and target are identical, and the rest of the matrix. The
overall range of values is from −0.68 to 0.78, while that on the diagonal is from −0.15 to 0.05.
The scheme of low values in RecallD propagates to D-Rate because missed nano-objects can
not be recovered by classification. This can be seen from the red values in (b), converting to
negatively signed red values in (f). One exception, which is at the same time the only positive
among the worst D-Rate values, arises from applying the parameters of experiment 200 nm
LQ to experiment 200 nm Gpy. Here the number of nano-objects in the data is overestimated
by an additional ratio of 0.78. The reason is low PrecisionD = 0.14 in combination with low
PrecisionC = 0.57 plus high M-Rate = 0.42. Concerning the other combinations of parameter
source and target experiments, however, the classifier demonstrates is merit: The red values
in PrecisionD (a), some of which are below 0.2, rarely propagate to red values in D-Rate (f)
as this is prevented by good values in PrecisionC (d). As with RecallD, experiments 200 nm

7.7. Cross-Experiment Generalization Performance 237

LQ (excluding one outlier), 100 nm HQ and 100 nm LQ provide parameters that generalize
best in analyzing data from other experiments.

The results discussed above with respect to Figure 7.19 suggest that running the Opti-
mization stage for difficult-to-analyze experiments, yields parameters that generalize well
to other experiments: Parameters optimized for the 100 nm experiments yield comparably
good values in RecallD, PrecisionC and D-Rate over all other experiments. Parameters op-
timized for easier-to-analyze experiments generalize worse, particularly with respect to the
difficult-to-analyze experiments. Hence, if cross-experiment generalization of parameter sets
is desired, e.g. because time does not permit conducting a new run of the Optimization stage,
difficult-to-analyze experiments should be used as the parameter sources. Good performance
is achieved particularly if the parameter target experiment is easier-to-analyze.

Simply using one single parameter set, optimized for the most difficult experiment available,
would render optimization for easier experiments unnecessary, if the attained performance
was good enough. Conjectures about the associated impact on performance can be formed by
comparing the main diagonals of the matrices in Figure 7.19 to the respective rows considered
as the parameter sources. Doing so, using e.g. experiment 100 nm LQ as the parameter source,
reveals that particularly for RecallD, PrecisionC and RecallC, parameters optimized for the
respective original experiment are in some cases beaten by those obtained from generalization.
However, conducting per-experiment optimization pays off by a large margin in terms of
M-Rate and the summary measure D-Rate: Here, values on the diagonal are considerably
closer to zero than those attained by generalizing parameters from experiment 100 nm LQ.
Therefore, to ensure the highest quality analysis results, it is generally recommended to run
the Optimization stage of SynOpSis separately for each experiment.

As a conclusion, however, if a new PAMONO experiment is conducted, and suitable
parameters are to be determined, the parameters that were optimized for previous experiments
are a good starting point, as demonstrated by the generalization performances in Figure 7.19.
This is particularly true for parameters optimized for difficult-to-analyze previous experiments.
One way of incorporating these parameters into a new optimization is adding them to the
initial population in the GA.

Cross-Experiment Generalization Performance of Data Sources

In the previous investigation, the cross-experiment generalization performance of parameter
sets was examined, which was conducted by applying foreign detector and classifier parameter
sets in analyzing an experiment. The classifying model, however, was learned from synthetic
ground truth created for the experiment under consideration. Now this investigation serves
to explore, whether also the classifying model can be learned from foreign synthetic ground
truth: Besides using foreign parameters as before, the classifying model is learned from all
other experiments, and not from the experiment to be analyzed. Hence, this investigation
aims at finding out how much can be learned from the ground truth of previous experiments
in classifying examples from a new experiment.

The setup of this investigation is as follows: In learning a classifying model from all other
experiments, the same image processing in terms of detector parameters is applied to all
data entering the model, as well as to the experiment to be analyzed. Therefore, the feature
vectors comprising the model and those to be classified by it are all computed based on
images that underwent the same processing in terms of background elimination, denoising,

238 Chapter 7. Evaluation of SynOpSis for PAMONO

time series classification and segmentation. The previous investigation determined that the
parameters optimized for experiment 100 nm LQ generalize well over the other experiments.
Hence these parameters are the only parameters employed during the entire investigation.
For each experiment, a classifying model is learned from the synthetic ground truth of all
other experiments. This model is then used to classify the real sensor data of the experiment
under consideration. Then the quality measures from Section 7.3.1 attained by this analysis
are evaluated in order to assess cross-experiment generalization performance of data sources.

Corresponding results are shown in Figure 7.20, which is completely analogue to Fig-
ure 7.12b, plotting measures and objectives as attained for the real sensor data from Table 7.1
over the three folds of cross-validation. Comparing Figure 7.20 to Figure 7.12b means compar-
ing it to the case where SynOpSis optimization is applied individually to each experiment, and
synthetic ground truth specific to that experiment is used in learning the classifying model.
Like with the matrices in Figure 7.19, the most apparent differences are severe increases in
M-Rate and D-Rate. Increases in M-Rate are due to the parameters being optimized for the
low SNR experiment 100 nm LQ, which requires highly sensitive parameters in order to detect
the faint nano-objects in the data. The constituents of the increase in D-Rate can be seen in
the other measures in Figure 7.20: PrecisionD decreases, thus there are more FP detector
responses; increased M-Rate adds repeated TPs to that; finally, decreased PrecisionC means
that fewer FP detector responses can be filtered out, resulting in overestimations of the
numbers of nano-objects, and hence large positive values of D-Rate. Furthermore, variability
over folds increases in all objectives and measures, compared to Figure 7.12b.

Note that comparing Figure 7.20 to Figure 7.12b does not isolate the effect of learning the
classifying model from foreign ground truth, but regards it in conjunction with using foreign
parameters for the detector and classifier. A more isolated inspection can be conducted by
comparing Figure 7.20 to each bottom row of the matrices in Figure 7.19 because these
rows already incorporate the loss incurred by applying parameters optimized for experiment
100 nm LQ to the other experiments. Hence the only difference between those rows and
the results in Figure 7.20 is that for the latter the classifying model is learned from foreign
data (and that three folds of cross-validation are shown). Therefore, in this comparison
only the measures PrecisionC, RecallC and D-Rate, i.e. those affected by the classifier, are
of interest. Losses incurred by the change in classifying models are most pronounced in
PrecisionC and D-Rate, while RecallC remains relatively unaffected. Concerning experiments,
200 nm Gpy and 100 nm LQ degrade the most severely, with values of D-Rate beyond one9.
This is not surprising because the change in employed camera in experiment 200 nm Gpy and
the low signal quality in experiment 100 nm LQ set these two experiments apart from the
others in terms of the visual appearance of nano-objects in the images. Learning a suitable
classifying model from the other experiments is not successful here, which manifests as low
values in PrecisionC, entailing high D-Rate. Successful learning requires experiments to be
more similar: Experiments 200 nm LQ and 100 nm HQ attain values in D-Rate that are of use
in practice. With reservations, this also holds for experiments 200 nm HQ and 200 nm MQ,
where the benefit of not requiring synthetic ground truth that is specific to the considered
experiment can be traded off for the necessity of manually sorting out FP nano-objects after
classification.

9D-Rate values for experiment 200 nm Gpy are 0.81538, 3.14872 and 3.62051, while those for experiment
100 nm LQ are 0.16071, 0.85714 and 1.57143.

7.7. Cross-Experiment Generalization Performance 239

PrecisionD RecallD M-Rate PrecisionC RecallC D-Rate

200 nm HQ 200 nm MQ 200 nm LQ 200 nm Gpy 100 nm HQ 100 nm LQ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.20: Cross-Experiment Generalization Performance – Data Sources. Results shown here
are analogue to those in Figure 7.12b: Three folds of the measures and objectives from
Section 7.3.1 are plotted over the real sensor data recorded in the experiments from Table 7.1.
Detector and classifier parameters optimized for experiment 100 nm LQ were used in all cases,
and for each considered experiment, the classifying model was learned from the synthetic ground
truth of all respective other experiments. The two truncated D-Rate values in the context
of experiment 200 nm Gpy are 3.14872 and 3.62051, while the one truncated in experiment
100 nm LQ is 1.57143. A detailed discussion of these results and comparisons to Figure 7.12b
and Figure 7.19 are given in the text.

Summary

The two investigations conducted in this section evaluated the cross-experiment generalization
performances attained by parameter sets alone, as well as in conjunction with the data sources
used for learning the classifying model. Analysis qualities observed in both investigations
are clearly beaten by running the Optimization stage of SynOpSis individually for each
experiment, which is not a surprising result because parameters and the classifying model
specifically target the experiment to be analyzed in the latter case. Parameters optimized for
more difficult-to-analyze experiments could be identified as generalizing better than those
optimized for experiments with higher SNR. Generalization performance was good enough
to motivate using parameter sets optimized for other experiments in the initial populations
of experiment-specific optimizations. Classifying models learned from the synthetic ground
truth of foreign experiments perform acceptably, if the visual appearance of nano-objects
does not differ too strongly from the experiment under consideration, which is the case
for nano-objects observed in similar setups of the PAMONO sensor. If a loss in quality as
observed in the two investigations is tolerable, the first investigation states that optimizing
parameters can be omitted, while the second one states that creating synthetic ground truth
for new experiments can be omitted, which are the two most time-consuming aspects of the
SynOpSis approach.

Chapter 8

Conclusion and Future Work

Contents
8.1 Conclusion . 241
8.2 Future Work . 243

In the previous chapter, the performance of the SynOpSis approach has been validated
on real PAMONO sensor measurements. Its capabilities, limitations and properties have
been investigated and presented quantitatively. Now Section 8.1 provides conclusions to
Chapter 7 and to the overall thesis by revisiting the claims of contributions from Chapter 1
in the light of the evidence produced up to here. Section 8.2 addresses open questions and
highlights possible directions for future research that can be conducted based on the findings
of this thesis. Both sections share the same division into the topic of PAMONO data analysis,
followed by considering a broader context.

8.1 Conclusion

PAMONO Data Analysis

In the course of this thesis, a parameter-optimized, model-based method for PAMONO
data analysis was developed and evaluated. PAMONO indirectly detects nano-objects, e.g.
biological viruses, by means of optical microscopy, exploiting the Surface Plasmon Resonance
(SPR) effect (Chapter 2). It could be shown that automatic analysis of PAMONO sensor data
is feasible in practice, achieving high quality in terms of nano-object counting (Section 7.5.5)
and results specificity (Section 7.5.7). Reliable particle count estimates allow conclusions
about particle concentration in the sample, due to their proportionality, as established
by Gurevich et al. [GTÜ+11]. The proposed analysis process keeps up with the real-time
capability of the PAMONO sensor itself (Section 7.5.8), providing results and enhanced images
to the sensor operator while the measurement is taken. It is targeted at energy-efficient
execution in portable devices [LST+13a; LSW13; LMS+14; NLE+15], thus constituting a
software-backend for developing a portable PAMONO sensor unit. Very low Signal-to-Noise
Ratios (SNRs), even below two, can be handled by the developed methods, enabling to
reliably detect nano-objects down to 100 nm in diameter (Figure 7.12b).

On the methodological side, the SynOpSis approach (Chapter 3) demonstrates the benefit
of automatic parameter optimization in configuring an image processing pipeline, using
PAMONO as the example application scenario. SynOpSis utilizes data synthesis to provide
ground truth for parameter optimization, the results of which are employed in real data
analysis. Its ability to adapt algorithm choice and parameters to varying experimental
conditions was validated in the context of the proposed detector and classifier for PAMONO

241

242 Chapter 8. Conclusion and Future Work

data analysis (Chapters 5 to 7). Achieved analysis qualities correlate with expectations drawn
from the physical parameters of the sensor setup: Employing gold layers of lower quality
results in larger errors in estimated nano-object counts and lower specificity (Tables 7.4
and 7.5). The establishment of this relation means taking a first step towards establishing
the applicability of SynOpSis in finding an optimized setup of the physical parameters of
the PAMONO sensor: The knowledge that changing a certain physical parameter leads
to improved/worsened analysis quality can be used in advancing the sensor itself. More
experiments concerning this topic are needed for confirmation (Section 8.2). In particular,
the link between physical parameters other than gold layer quality and the obtained data
quality needs to be thoroughly investigated.

Concerning techniques for PAMONO data analysis, the interplay of a highly sensitive
detection followed by machine learning-based classification for enhancing precision was
demonstrated to be successful (Section 7.5). A Random Forest learner with prior class-
balancing and using the full set of presented features (Section 6.2) was determined to work
best in the examined PAMONO experiments (Section 6.7). Optimized detector and classifier
parameters as well as the classifying model determined by means of machine learning were
verified to transfer well from the synthetic ground truth they are based on, to the real
input data that is to be analyzed (Section 7.5). This transferability validates the proposed
PAMONO signal model (Chapter 4) in terms of the tasks it serves in SynOpSis: Parameters
can be optimized on synthetic data and a classifying model can be learned from it. Rephrased
in terms of machine learning, this transferability means that the generalization performance
of parameters and classifying model from synthetic to real data was shown to be high. Their
generalization performance across different PAMONO experiments was found to be lower
(Section 7.7), however still achieving serviceable results, particularly with parameters that
were optimized for difficult-to-analyze experiments.

Performance estimates for analysis results on real sensor data were given, and their quality
was evaluated (Section 7.5.6): For experiments with 100 nm nano-objects, estimation errors
between −72% and +47% were incurred in nano-object counts, which is too large for practical
purposes. Note, however that these numbers relate to errors in performance estimates, while
the actual analysis quality for 100 nm nano-objects was considerably better (Table 7.4). For
200 nm experiments, errors in performance estimates ranged from −7% to +12%, allowing
a lab operator to tightly assess the potential error incurred in reported nano-object counts.
Given the examined setup of SynOpSis for PAMONO data analysis (Section 7.3), it can
be readily applied in everyday-lab practice: No familiarity with the underlying algorithms,
machine learning or optimization is assumed in the operating lab personnel. Furthermore,
only minimal manual segmentation effort is required: A small number of examples of the
nano-objects to be counted is needed to seed the signal model and thus enable the Synthesis
stage to generate datasets with known ground truth that are highly similar to real data
(Section 4.3). Everything else, including parameter optimization and training of a classifying
model, is handled automatically by SynOpSis. Hence, solely domain knowledge is required,
which is traded in for automatic handling of everything else.

Broader Context

Polystyrene nano-objects with 100 nm in diameter can be successfully counted using SynOpSis
and PAMONO. These nano-objects are about the size of the Human Immunodeficiency Virus

8.2. Future Work 243

(HIV), which is approximately 120 nm in diameter. HIV Virus-Like Particles (VLPs) have
already been successfully counted by means of SynOpSis and PAMONO [STM+15]. VLPs
are non-infectious virus envelope proteins lacking the genetic information for reproduction
[GA06]. Hence they are frequently used as a safe proxy in experiments investigating virus
properties other than reproduction, e.g. their binding behavior as in the case of PAMONO.
Being able to detect HIV on the basis of the virus itself, as opposed to detecting HIV
antibodies as in regular rapid HIV tests [GBP+06], may help in minimizing the diagnostic
gap observed in the context of HIV: The antibody concentration required for validity of
rapid HIV tests is at the earliest reached three months after an infection. During those
three months, virus concentration in the affected bodily fluids is particularly high, resulting
in a severely increased risk of transmitting the virus further. Narrowing this three-months
diagnostic gap by detecting the high concentration of viruses instead of the low concentration
of antibodies is a desirable goal. This requires further PAMONO experiments involving HIV
or HIV VLPs within or extracted from human bodily fluids like blood. The same holds for
other viruses to be detected with PAMONO, in order to develop rapid real-time-capable tests
for the respective virus-transmitted diseases. SynOpSis can serve in accelerating execution of
the arising large number of experiments.

In such diagnostic contexts, results specificity must be particularly high to avoid false
positive experiments. A false positive experiment means that at least one virus is reported for
a full dataset of PAMONO images that does not contain any viruses. Hence, in such a case
not a single false positive classifier response is allowed over several thousands of images, in
order to avoid a false positive experiment. Expressed in terms of Table 7.5 from Section 7.5.7,
Specificity one is mandatory here. A step in this direction can be taken by extending the
Optimization stage accordingly: Specificity on a virus-free time series of images can be added
as a further objective or even as a hard constraint by assigning desirability zero to individuals
with Specificity below one. The facilities for doing so are already present in SynOpSis, and a
virus-free measurement is already part of the experimental protocol from Section 4.3.1. An
additional such measurement should be conducted in order to assess Specificity on data not
used in synthesis.

8.2 Future Work

PAMONO Data Analysis

The discussion in the previous section already touched upon some points that naturally lead up
to further investigations and research. Expanding the fields of application of PAMONO
is the first of these points. On the sensor side, the gold layer can be modified such that it can
distinguish multiple types of viruses: Coating different areas on the sensor surface with
different antibodies makes each such area selective for a certain type of virus. Hence virus
types can be distinguished based on the position of their attachment. Furthermore, PAMONO
experiments with other types of nano-objects, e.g. fine dust and other particulate
matter from car or industrial exhaust, can be performed. A possible method for attaching
such nano-objects to the surface is electrostatic charge. On the side of SynOpSis, the most
obvious goal is lowering the size of detectable nano-objects in order to make the realm
of viruses smaller than 100 nm accessible for PAMONO. In particular, this means pushing
the breakdown point, i.e. the transition from under- to overestimation of nano-object counts

244 Chapter 8. Conclusion and Future Work

(determined in Section 7.5.5), down to smaller nano-objects or lower SNRs, respectively.
A possible idea for enhancing the algorithms in this direction is merging the detector and
classifier by running the latter on the per-pixel level instead of the per-polygon level. The
spatial and spatiotemporal features from Section 6.2 are defined in terms of per-pixel feature
maps which are good candidates for training the classifier from. Such a merged approach
may be more robust to noise than the sequential, separate execution of pixel and polygon
classification (Sections 5.4/5.5 and Chapter 6, respectively). The reason is that more data is
considered in the merged approach: Feature vectors are no longer aggregated over polygon
area, but polygons are created from a pixel classification exploiting these feature vectors.
In this context, developing further features may prove beneficial. Using a GPU-accelerated
Random Forest [Lib15b; Bre01] as the classifier may help in maintaining real-time capability
in the merged approach.

While the PAMONO data analysis process presented in this thesis is real-time capable,
the optimization to be conducted in case of larger changes in physical sensor parameters
constitutes a time-consuming offline step (Table 7.6). Hence another direction for future
research is the acceleration of optimizations which can for example be done by using one
or a combination of the following ideas:

• A lower-dimensional parameter space can facilitate optimization by reducing the num-
ber of required samples. Hence removing irrelevant parameters can accelerate
optimization. Irrelevant/less relevant parameters were identified in Section 7.6.1, which
can be exploited as follows: Boolean switches with definitive votes (e.g. 90% versus 10%)
can simply be fixed at the values chosen by the majority of individuals on the Pareto
front. Furthermore, parameters of the algorithms that are deactivated by those boolean
switches can be removed. Finally, parameters of active algorithms that exhibit preferred
values in individuals on the Pareto front can either be set constant, or their examined
range can be narrowed, allowing for fine-tuning only. The set of remaining parameters
can furthermore be reduced by determining, whether it has low effective dimensionality,
i.e. only few parameters actually have a pronounced influence on objective values. A
method to this end was proposed in [BB12]: The idea is to fit a Gaussian Process
(GP) to the evaluated samples in parameter space, similar to GP-based meta-modeling
[BBB+11]. Then the variables of this GP model fit can serve as measures of sensitivity
of the response surface (and hence the objective) to changes along the dimensions of
parameter space. Such an approach can help in answering the question whether a
parameter assumes evenly distributed values in well-performing individuals because the
parameter is simply irrelevant for objective values or because its optimal values are
evenly distributed throughout its range. Both cases result in high entropy histograms
of parameter values (cf. histograms in Section 7.6.1). Hence examining histograms
alone can not answer the question of parameter irrelevance, while analysis of effective
dimensionality can. The lower the number of parameters to which the response surface
is sensitive, the lower the effective dimensionality of parameter space, and hence the
fewer parameters are worthwhile to be optimized. With regard to PAMONO, the
following three questions should be investigated: Firstly, does the PAMONO optimiza-
tion problem have low effective dimensionality for a given experiment and objective?
Secondly, are effective dimensions the same over all/most experiments? Thirdly, are
effective dimensions the same over objectives? If all questions can be answered with

8.2. Future Work 245

‘yes’, default values can be fixed for the irrelevant dimensions, and optimization can
focus on the relevant dimensions only.

• Meta-modeling [BLP10; KKF+11; HHL11; BBB+11; BMT+12] can accelerate
optimization by creating an approximate model function of the response surface to
be optimized. The model function can be evaluated and optimized more quickly and
easily, earning a merit if it approximates the response surface well enough to provide a
good sense of the direction of improvement in parameter space. Meta-modeling can be
carried out separately for each optimization, or it can be used to integrate optimization
results over multiple experiments. Success of the latter is particularly likely if the
questions asked at the end of the paragraph about removing irrelevant parameters can
be answered with ‘yes’.
Preliminary investigations on the applicability of meta-modeling in SynOpSis for PA-
MONO were carried out in Section 7.6.2. In this context, Table 7.7 demonstrates
that accumulating results over multiple optimizations incurs a benefit over creating
a new meta-model from scratch for each optimization. This suggests suitability of
meta-modeling for accumulating knowledge gained during optimizations over multiple
PAMONO experiments. Particularly in face of the scenario of a distributed collaborating
network of PAMONO sensor nodes [LKD+14], this is an important finding, which
should be explored further. Part of this investigation should quantify how much can
be gained from integrating optimization results of different experiments in a single
meta-model. The resulting quantity is a measure of what can be gained by sensor
collaboration.
Concerning the topic of meta-modeling, it should be pointed out that its base versions
only cover a single-objective setting, but that multi-objective extensions are available
[KN08]. The former can be used in optimizing the Desirability Index (DI), while
the latter can serve in optimizing Desirability Functions (DFs) or raw objectives. As
a further preliminary result, Table 7.7 showed three cases where the DI could be
predicted better than three of its four constituent objectives, hinting at single-objective
meta-modeling as a good starting point.
Note that all regression models evaluated in Table 7.7 were fit to the data after all
optimizations entering the model were finished, and that quality was measured in a
cross-validation. Hence the reported values represent the qualities those meta-models
can achieve at the end of optimizations. Therefore, this preliminary investigation should
be extended by examining the performance of single-objective and multi-objective
meta-models during optimization, i.e. in a sequential fashion [HHL11].
As a summary, the topic of meta-modeling in PAMONO poses three questions: Firstly,
how well can meta-modeling approximate the response surface? Secondly, by how
much can optimization be accelerated with it? Thirdly, how much can a network of
cooperating sensor nodes benefit from it? The topic of collaborating sensors discussed
above will be picked up again further below, providing more details.

Besides acceleration of optimizations, another topic worth investigating is whether the
manual segmentation of nano-objects used to seed the signal model can be made dispensable:
Towards the end of sensor prototype development, physical sensor parameters converge, and
large amounts of data from previous experiments are available. In this scenario, the following
ideas for obtaining a classifying model with less or no interaction are conceivable:

246 Chapter 8. Conclusion and Future Work

• One idea is updating an existing classifying model incrementally via active learning
[Set10]. In such an approach, the interactive part can e.g. be crowdsourced to a platform
like Amazon’s ‘Mechanical Turk’ [BKG11; DK13].

• Furthermore, Section 7.7 demonstrated that learning a classifying model by combining
synthetic data from previous experiments yields acceptable results if the nature
of the experimental data to be analyzed does not differ too much from the nature of
the data constituting the model. Hence this idea strongly benefits from converging
physical parameters in PAMONO sensor development. It can be used as a starting
point for fixing a classifying model in a non-interactive way. One key to improving
cross-experiment generalization performance of such a model is simply the amount of
data entering it. If the resulting model becomes too large for real-time application,
the condensed k-Nearest Neighbors (k-NN) classifier from Section 5.5.3 can be used
to compute models of adjustable size and application speed: The selected number of
cluster centers to be computed allows control over the level of feature space detail
represented in the resulting classifying model. This number of cluster centers can be
adjusted to allow for real-time application of the classifier on the target system. As
an example application scenario, consider the case where an embedded system, used
for data analysis in a portable PAMONO sensor unit, requests a classifying model
from a central server. Then that server can compute a condensed k-NN classifier from
all currently available data, and in that computation the server can select a number
of cluster centers that ensures real-time applicability of the model on the requesting
embedded system. This can be done rapidly due to the streaming-capable BIRCH Meets
Coresets (BICO) clustering [FGS+13] which can handle very large inputs, allowing
the integration of data from many experiments. The typically unbalanced classes in
the input can be balanced during clustering. k-NN can model intricate and disparate
class boundaries which empowers it to integrate data from very different PAMONO
experiments. The requirement, however, is that feature values across experiments
should not overlap too much over different classes.

A conceptually very different approach that can be explored for the PAMONO data
analysis task is deep learning [KSH12]: This technique learns not only a classifying model,
but also feature extraction itself, from the data. Unlike the engineered, application-specific
features used by SynOpSis, the feature extraction of deep learning is encoded in the front layers
of the same deep Convolutional Neural Network (CNN) used as the classifying model. Hence
features themselves are learned as part of the supervised learning procedure optimizing the
CNN. Note that compared to SynOpSis, deep learning replaces/augments the tuning of high-
level algorithmic parameters with the optimization of a considerably larger number of low-level
parameters defining the function computed by the neural network. Deep learning techniques
have recently raised the bar in per-pixel labeling of natural images [FCN+13]. However,
this task typically exhibits more structure but also many more classes than PAMONO data
analysis, so the suitability of deep learning for PAMONO needs careful investigation.

A further direction of future research is the collaborative sensor network [LKD+14]
already touched upon in the context of meta-modeling. One key motivation behind this
networked scenario is the desire to conserve energy in PAMONO sensors that are spatially
distributed in remote locations with no energy sources available. A practical application is
e.g. large-scale monitoring of viral propagation in rural environments. The network can serve

8.2. Future Work 247

to offload [KL10; TC13] tasks from sensor nodes with lower battery level to nodes with higher
battery level, thus balancing energy levels across the network. Furthermore, it can be used
to offload tasks to a central server with an energy source available. The goal is to keep the
sensor network running as long and as completely as possible with a single charge of batteries.
Data can be transferred e.g. via the Long-Term Evolution (LTE) network, which is beneficial
if the energy used for communication is lower than the energy required for performing
the task locally. As an example, energy-intensive optimization tasks can be offloaded to a
server that is not subject to energy-constraints. Thus optimizations1 can be carried out on
powerful GPU servers, which accelerates the adjustment of sensors to changes in their physical
parameters and helps in adhering to the energy constraints imposed by remote operation.
Energy conservation, however, is not the only motivation behind the networked scenario:
The aspect of collaboration furthermore encompasses sensors collaborating in terms of
knowledge about the data generated by each sensor. One way of storing and utilizing the
knowledge created in collaboration is a meta-model [BLP10; KKF+11; HHL11; BBB+11;
BMT+12], as already outlined above. A meta-model can accumulate knowledge from all
nodes in the sensor network, and hence each node can benefit from the data provided by all
other nodes. The meta-model collects optimization results over multiple experiments, and by
abstracting and learning from these results it stores knowledge about the PAMONO-related
optimization problem as gained from all collaborating sensor nodes. This knowledge can be
used to predict the performance of candidate parameter sets during optimization, which is
thus accelerated. It can additionally help conserving energy during optimizations carried out
locally on a sensor node: If the meta-model predicts low performance with high certainty
for a candidate parameter set, that set need not actually be evaluated. Hence low energy
consumption is traded off for possible inaccuracies incurred by predicted objective values.
Having performance of a parameter set predicted by a meta-model on a central server incurs
only minor communication cost in case of the 31 parameters to be optimized for PAMONO
data analysis. An ultimate goal is predicting suitable algorithmic parameters themselves
from instance-based features of the time series of input images. Research should go into
constructing suitable features to this end.

A last aspect to be mentioned in the context of PAMONO data analysis is the possibility
of letting SynOpSis results drive the improvement of the sensor: SynOpSis provides
a quick way of obtaining analysis results for new experimental setups of the PAMONO sensor,
e.g. during prototype development. The performance estimates produced by SynOpSis can
be regarded as a measure of difficulty of the analysis task. This difficulty can be used as an
objective driving the alteration of the physical sensor parameters, with the goal of decreasing
difficulty of analysis by providing the best-possible data. This can guide sensor development in
an iterative process of improvement, converging in an optimized sensor setup, thus advancing
the sensor itself. While realizing this goal is highly desirable, more experiments are needed
to fully confirm and back up the applicability of SynOpSis in driving PAMONO sensor
development: A first step in this direction can be taken by varying physical sensor parameters
that are known to affect data quality. This should be done in a systematic and isolated
fashion, and the correlation between the known physical parameter quality and SynOpSis
performance estimates should be quantified. A high correlation suggests that SynOpSis
performance estimates can be used to traverse the search space of physical sensor parameters.

1Seeding the signal model with nano-object examples to synthesize ground truth for optimization (Chapter 4)
can be done by means of a segmentation app, operated in the remote location.

248 Chapter 8. Conclusion and Future Work

Broader Context

SynOpSis was conceptualized with regard to the abstract task description presented in
Section 3.1. This description steps back from the concrete task of PAMONO data analysis
and identifies the basic abstract building blocks required for solving tasks of this type.
Chapters 4 to 6 subsequently developed concrete PAMONO-specific versions of these building
blocks. SynOpSis and these building blocks are designed in a modular fashion, hence individual
parts can be easily replaced or adapted with regard to different fields of application, while
the overall approach of synthesis, optimization and analysis can be reused. Therefore, the
remaining part of this thesis lists and examines other possible fields of application for
SynOpSis.

The most obvious candidate domains for adapting SynOpSis to are other microscopy
modalities. Examples are the detection and classification of objects of interest in histo-
logical slices [HBR+08; HBR+12; ALN+12; WHS+12], phase contrast microscopy
[PKC09; YBC+10; ALN+12], differential interference contrast microscopy [YBC+10]
or fluorescence microscopy [TRS+02; Oli02; ZFS+07; JZK+07; SLN+09; ALN+12].
Many of these modalities are frequently used for cell detection, which may involve multi-class
cell-classification. Possibilities for multi-class extensions of SynOpSis were sketched in the
footnotes of Chapter 3.

Less obvious candidate domains for applying SynOpSis reside on a scale very different
from that of microscopy: These domains are from the context of astronomy, in particular
from astroparticle physics. Generally speaking, the task is detection and classification
of astrophysical particles from extraterrestrial sources. Some of these particles serve as an
indirect proof in detecting e.g. active galactic nuclei [DE13]. Hence, depending on whether
one is concerned with the cause (astronomical objects) or with the effect (astroparticles), the
examined scale is either considerably larger or smaller than in PAMONO data analysis. Three
possible observation tasks for applying SynOpSis in astroparticle physics will be summarized
now, including an identification of the required modifications. As a conclusion from this, the
abstract requirements for making SynOpSis applicable in a new domain are listed.

The first example is constituted by the Major Atmospheric Gamma Imaging Che-
renkov Telescopes (MAGIC) [VFB+14]: Like the PAMONO sensor, MAGIC delivers
data with two spatial and one temporal dimension. Each event recorded by MAGIC shows
an atmospheric light shower. These light showers are caused either by extraterrestrial γ-ray
sources or by hadrons interacting with the atmosphere of the earth. The data analysis task is
firstly detection of the spatial coordinates affected by a light shower and secondly classification
of the cause: Spatiotemporal characteristics of γ-ray-initiated light showers are different from
those of hadron-initiated light showers, hence the telescope can be used to survey the night sky
for extraterrestrial γ-ray sources like active galactic nuclei. The composite task of detection
and classification ideally matches the abstract task description of SynOpSis (Section 3.1).
Furthermore, a Synthesis stage is already available: Majumdar et al. [MMB+05] developed a
method for synthesizing both, γ-initiated and hadron-initiated light showers. These Monte
Carlo (MC) physics simulations can be used to create synthetic ground truth for optimizing
a detector and for training a classifier. Denoising and per-pixel time series classification are
subtasks arising in MAGIC data analysis as well, and application-specific features for event
classification have been defined in terms of the Hillas parameters [Hil85]. These prerequisites
make MAGIC data analysis an ideal candidate for investigating generality of the SynOpSis

8.2. Future Work 249

approach. Furthermore, it opens an alley for future research aimed at determining whether
MAGIC data analysis can benefit from the capabilities of SynOpSis. The same holds for
the First G-APD Cherenkov Telescope (FACT) [DT14] which, as an enhancement of
MAGIC, delivers the same type of data at a different resolution.

Spatiotemporal data with a third spatial dimension is provided by the IceCube Neu-
trino Observatory [Ruh13], which is a further possible domain for applying SynOpSis in
astroparticle physics. Its goal is estimating the spectrum of atmospheric neutrinos2, which
have to be separated from atmospheric muons, both of which trigger events in a cubic-
kilometer-sized detector-array below the Amundsen–Scott South Pole Station. MC-based
simulators for both, neutrinos and muons, are already available [Oli+16; CGK+92], and
software for event detection and classification [Ruh13] can be integrated into SynOpSis by
adapting the interfaces described in Sections 3.5 and 3.6.

Regarded abstractly, the common denominator for applicability of SynOpSis is a
signal model for synthesis and base ideas for realizing a detector, feature extraction and a
classifier. Concerning classification, the emphasis lies more on feature extraction than on
the classifier itself, because the design of the latter is based on a rather general machine
learning process. Due to the modular structure of SynOpSis, its building blocks can be
filled with application-specific methods as necessary. Assessing the quality attainable by
such generalizations of SynOpSis and comparing it to the state of the art in the respective
field is left open for future research. Doing so may establish SynOpSis as a method for
facilitating/accelerating analyses in prototypical sensor development beyond PAMONO.

2To be fully exact: Neutrino-induced muons have to be separated from atmospheric muons [Ruh13], and
the neutrino-induced muons serve as an indirect proof of the neutrinos that caused them.

Appendix A

Performance Measures and
Equivalences

This appendix provides formal definitions of a selection of performance measures that can
be used to assess the quality of detection and classification results. In the definitions given
here, only two-class classification is considered, while some of the measures have multi-class
generalizations. All of the presented measures can be used in the context of classification.
Some, however, are not readily applicable in detection, which is indicated in the discussion of
the individual measures. Besides that, equivalences and synonyms of the respective measures
are listed. Depending on application requirements, one or more of these measures may serve
as objective functions in the Optimization stage of SynOpSis or other approaches.

Throughout the definitions, the abbreviations in Table A.1 are used to denote the entries
of the confusion matrix of the computed prediction, where ‘prediction’ is a placeholder for
‘detection’ and ‘classification’, respectively.

• Recall:
Recall [HG09] measures the ratio of correctly predicted positive patterns among all
actually positive patterns and hence the ratio of actually positive patterns that could
be found. Thus Recall is synonymously denoted as Sensitivity.

Recall = TP
TP + FN

. (A.1)

• Precision:
Precision [Pow11] measures the ratio of correctly predicted positive patterns among
all patterns predicted to be positive and is hence synonymously denoted as Positive
Predictive Value (PPV) [AB94].

Precision = TP
TP + FP

. (A.2)

Table A.1: Confusion Matrix Entries and Abbreviations. The table shows how the entries in the
confusion matrix of a prediction are abbreviated in the definitions of performance measures. The
term ‘prediction’ is a placeholder for ‘detection’ and ‘classification’, respectively.

Ground Truth
Positive Negative

Prediction
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

251

252 Appendix A. Performance Measures and Equivalences

• Fβ score:
Fβ score score [Chi92] is defined as the β-weighted harmonic mean of Precision and
Recall defined above. For β = 1, it is also denoted as F1 score, F-score, F-measure or
Positive Agreement [KP03].

Fβ =
(1 + β2) ⋅Precision ⋅Recall
(β2 ⋅Precision) +Recall

= (1 + β2) ⋅TP
(1 + β2) ⋅TP + β2 ⋅ FN + FP

. (A.3)

It considers all entries of a two-class confusion matrix except for TN, which does not
arise in detection tasks [WHS+12; SLN+09]. By β it provides a possibility to balance
between Precision and Recall. This makes it a possible choice for single-objective
optimization.

• Specificity:
Specificity [Pow11] measures the ratio of correctly predicted negative patterns among
all actually negative patterns and hence the ratio of actually negative patterns that
could be found:

Specificity = TN
TN + FP

. (A.4)

Thus Specificity is the Recall of the negative class because Equation (A.1) can be
transformed into Equation (A.4) by swapping positives and negatives. Specificity can
not be applied as an objective in optimizing object detection, where by task definition
the number of TNs is always zero because undetected patterns do not result in a detector
response [WHS+12; SLN+09]. Hence, in detection, Specificity will always be zero or,
in the case of no FPs, 0/0 = NaN (not a number). However, the Specificity measure can
be used in the context of classification, cf. e.g. Section 7.5.7.

• Negative Predictive Value (NPV):
NPV [AB94] measures the ratio of correctly predicted negative patterns among all
patterns predicted to be negative and is hence negative class Precision.

NPV = TN
TN + FN

. (A.5)

NPV can not be applied as an objective in optimizing object detection for the same
reason as discussed with respect to Specificity. NPV in detection degenerates to NaN
in the case of no FNs and is zero otherwise.

• Accuracy:

Accuracy = TP +TN
TP +TN + FP + FN

. (A.6)

Accuracy [Pow11] is the ratio of correctly predicted patterns among all patterns (and
thus readily generalizes to more than two classes). It should not be used as the sole
performance measure if the data exhibits severe class imbalance because in that case a
bad performance in classifying the minority class can always be compensated for by a
good performance in classifying the majority class. Hence, Accuracy can ascribe high
performance to classifiers that fail in classifying the minority class.

253

• Area under the ROC Curve (AUC):
AUC [Faw06] is defined as the integral of the Receiver Operating Characteristic (ROC)
curve, which is the curve arising from plotting Recall over Fallout, where Fallout =
1 − Specificity. The ROC curve is obtained by applying a sliding threshold to classifier
confidences: For each value of the threshold, a new classifier is obtained by assigning
a class label to a pattern, based on whether the confidence in its class membership is
above or below that threshold. Each such classifier yields one point of the ROC curve
by computing its Recall and Fallout value. Computation of ROC and consequently
AUC assumes a classifier that delivers confidence values. AUC can not be applied as an
objective in optimizing object detection because, as discussed, Specificity is either 0 or
NaN, making Fallout either 1 or NaN.

This list of performance measures is far from complete and only serves as an introduction
for the two-class case. Further performance measures can be found in the cited literature,
especially in [Pow11]. In addition to that, Sokolova and Lapalme systematically survey
performance measures for two-class, multi-class, multi-labeled and hierarchical classification
problems [SL09], while Sokolova, Japkowicz, and Szpakowicz propose additional measures
[SJS06].

Appendix B

Comparison of Wavelet Bases

The wavelet bases available in the WaveLab package [CD95; DMS06] were examined for their
suitability in the extraction of the translation-invariant (TI) time series features defined in
Section 5.5.1. Suitability was evaluated in terms of Accuracy attained in classifying an unseen
test set of time series, using the method proposed in Section 5.5. The examined bases were:
Haar, Beylkin, Coiflet 1, Coiflet 2, Coiflet 3, Coiflet 4, Coiflet 5, Daubechies 4, Daubechies
6, Daubechies 8, Daubechies 10, Daubechies 12, Daubechies 14, Daubechies 16, Daubechies
18, Daubechies 20, Symmlet 4, Symmlet 5, Symmlet 6, Symmlet 7, Symmlet 8, Symmlet 9,
Symmlet 10, Vaidyanathan, Battle 1, Battle 3, Battle 5.

Table B.1 shows the results as attained for the three examined classification tasks after
optimizing the feature selection and the number of regarded neighbors in k-Nearest Neighbors
(k-NN). All other parameters were chosen as in the first row of Table 5.1 within the main
evaluation, cf. Section 5.5.4. Variations in Accuracy over the bases are generally small within
a single task, as can be seen from the standard deviations in the last row of Table B.1.
The Haar basis performs best in separating the up ∪ down class from the background class
(column ‘Task 2a’) and attains the highest mean Accuracy over all tasks (column ‘Mean’).
Furthermore, Haar-based features are fastest to compute (column ‘Time (s)’). For these
reasons, the Haar basis was chosen for all experiments conducted in Section 5.5 [SFL+14].

255

256 Appendix B. Comparison of Wavelet Bases

Table B.1: Comparison of Wavelet Bases. Accuracy values on an unseen test set as attained by the
examined wavelet bases (column one) are shown for the three classification tasks (columns two
to four). Furthermore, the mean Accuracy over the three tasks is reported (column five), and
the computation times in seconds, as taken for extracting features from 100000 time series, are
displayed (column six). For each numeric column, the best entries are highlighted in bold type,
and the column mean value and standard deviation are provided in the last two rows. Among
all examined wavelet bases, the Haar basis attains the highest mean Accuracy over all tasks, as
well as the highest Accuracy for task 2a. In addition to that, Haar-based features are fastest to
compute.

Wavelet Basis Task 1 Task 2a Task 2b Mean Time (s)

Haar 0.86630 0.94989 0.99790 0.93803 3258
Beylkin 0.86310 0.94344 0.99835 0.93496 3725
Coiflet 1 0.86510 0.94704 0.99865 0.93693 3391
Coiflet 2 0.86460 0.94749 0.99745 0.93651 3457
Coiflet 3 0.86320 0.94554 0.99760 0.93545 3664
Coiflet 4 0.86540 0.94239 0.99730 0.93503 3672
Coiflet 5 0.86530 0.94359 0.99715 0.93535 3717
Daubechies 4 0.86550 0.94599 0.99745 0.93631 3335
Daubechies 6 0.86490 0.94854 0.99835 0.93726 3357
Daubechies 8 0.86380 0.94404 0.99895 0.93560 3410
Daubechies 10 0.86320 0.94359 0.99805 0.93495 3493
Daubechies 12 0.86270 0.94464 0.99835 0.93523 3431
Daubechies 14 0.86460 0.94224 0.99790 0.93491 3498
Daubechies 16 0.86300 0.94389 0.99745 0.93478 3475
Daubechies 18 0.86300 0.94299 0.99790 0.93463 3663
Daubechies 20 0.86140 0.94329 0.99790 0.93420 3627
Symmlet 4 0.86580 0.94734 0.99850 0.93721 3407
Symmlet 5 0.86500 0.94254 0.99805 0.93520 3582
Symmlet 6 0.86420 0.94419 0.99730 0.93523 3605
Symmlet 7 0.86420 0.94134 0.99730 0.93428 3654
Symmlet 8 0.86360 0.94134 0.99745 0.93413 3607
Symmlet 9 0.86380 0.94569 0.99805 0.93585 3696
Symmlet 10 0.86680 0.94494 0.99730 0.93635 3716
Vaidyanathan 0.86080 0.94419 0.99730 0.93410 3739
Battle 1 0.86700 0.94749 0.99760 0.93736 3754
Battle 3 0.86360 0.94329 0.99700 0.93463 4052
Battle 5 0.86360 0.94194 0.99715 0.93423 4202

Column Mean 0.86420 0.94456 0.99777 0.93551 3600
Column Std. Dev. 0.00148 0.00225 0.00052 0.00112 208

Appendix C

Publications and Author’s
Contributions

Major parts of the contributions made in this thesis have previously been published in the
context of peer-reviewed national and international conferences and journals. In the following,
the corresponding publications are listed, arranged by topic. Since all publications were
created in collaboration with other authors, the contributions of the author of this thesis
(briefly referred to as “the author”) to each publication is indicated, as required by applicable
PhD regulations.

Signal Model and Synthesis. The signal model for the PAMONO sensor was proposed
in [SLW+14]. It was devised in collaboration with one of the co-authors (A. Zybin) from
ISAS Institute (Leibniz-Institut für Analytische Wissenschaften), who also conducted the
PAMONO experiments that provided the employed data. The experimental protocol and the
proposed methods to compute synthetic PAMONO imagery on the basis of the signal model
were devised by the author of this thesis. These topics led to Chapter 4. Besides methods
related to the signal model, the paper includes the following contributions by the author: An
early version of the SynOpSis approach is presented, which automatically optimizes detector
parameters. The quality of detector results is quantified in terms of two measures, one of
which serves as the objective in optimization. Automatic evaluation of measures is enabled
by synthetic ground truth. These aspects were developed and realized by the author. An
exception is the interface to the Java Genetic Algorithms Package (JGAP) [MRK+11], which
was provided by one of the co-authors (P. Libuschewski).

Detector. Methods for detecting regions in PAMONO data that are candidates for being
affected by nano-object adhesions were presented in [SWL+11; LST+13a; LST+13b] and
[SFL+14]. The real-time capable detector pipeline is described in [SWL+11] and extended
in [LST+13a]. It was developed in collaboration with P. Libuschewski: PAMONO-specific
image processing algorithms, as well as techniques for time series classification used by the
detector were devised, improved and fine-tuned in collaboration, while their implementation
on the Graphics Processing Unit (GPU) is due to P. Libuschewski. The work in [LST+13b]
is a German short version of [LST+13a].

An alternative approach to time series classification in the detector was presented in
[SFL+14]. It is based on features of translation-invariant (TI) wavelets. The presented
approach was devised by the author of this thesis. This includes the design and implemen-
tation of the TI wavelet features, an according feature selection and the implementation
of condensed k-Nearest Neighbors (k-NN) classification. The latter incorporates the BICO
approach [FGS+13] to fast coreset-based clustering, which was provided by a co-author (H.
Fichtenberger), who is responsible for everything related to BICO, including a customized

257

258 Appendix C. Publications and Author’s Contributions

implementation. In this thesis, the detector as a whole is covered in Chapter 5, while TI
wavelet-based time series classification is detailed as a part of that chapter, in Section 5.5.

Classifier. Methods for machine learning-based classification of PAMONO data were first
proposed in [SWL+11]. The contributions of the author to this paper were as follows: A
concept was designed and implemented that splits the PAMONO data analysis task into
a highly sensitive detection of spatiotemporal nano-object candidate regions and a subse-
quent classification that separates these candidate regions into correct and spurious detector
responses, respectively. This concept is part of Chapter 3. The machine learning process
realizing the classifier part was designed and implemented by the author. It encompasses
evolutionary optimization of classifier parameters and feature selection. This process, its
optimization and the feature selection served as the basis for the enhanced classifier presented
in Chapter 6. Details of these enhancements will be discussed in the next paragraph.

SynOpSis Approach. The SynOpSis approach and its constituents are covered in a range
of papers [SWL+11; SLW13; LST+13a; LST+13b; SLW+14; SFL+14; STM+15]. Both,
SynOpSis and its components underwent continuous enhancements. An early version of the
optimization concept was presented as a poster [SLW13], which later became part of the
full paper [SLW+14] discussed above. Hence, the author’s contributions to the poster were
already listed there. One exception is the parameter-optimized classifier used in the context
of the poster, whereas the paper focused on the detector only.

After [SLW13] and [SLW+14] were published, the JGAP library used therein for evolu-
tionary optimization was replaced with the Java-Based Evolutionary Computation Research
System (ECJ) [Luk15]. Again, an interface by P. Libuschewski was used, which extends ECJ
with functions for managing data dependencies [LMS+14]. This interface was incorporated
into the final version of SynOpSis by the author, making it scriptable, adding PAMONO-
specific evaluators and enabling different variants of sequential and global optimization.

Besides that, compared to the optimization approach used in [SLW+14], the version of
SynOpSis presented in this thesis includes the following enhancements by the author: The
set of optimized detector [LST+13a; LST+13b; SFL+14] parameters was reexamined. The
classifier from [SWL+11] was included into the optimization and was enhanced itself as follows:
New spatial and spatiotemporal features for classification were added to feature extraction
in collaboration with P. Libuschewski. The Random Forest algorithm [Bre01] was added to
the set of considered classifiers, and the possibility of balancing class prevalence [HBG+08]
was included and evaluated. Furthermore, instead of using manually created ground truth
for training as in the original paper [SWL+11], synthetic ground truth is used, which is
available due to the signal model [SLW+14]. Given these enhancements of the classifier,
all of which are detailed in Chapter 6, SynOpSis was furthermore enhanced by making the
optimization multi-objective in terms of optimizing two objectives for the detector and two
for the classifier. Hence automatic evaluators for the objectives were added. Besides that,
methods for desirability-based [TW06] model selection and performance estimation [HTF09]
were added after the optimization. Chapter 3 describes the SynOpSis approach including
these enhancements. As parts of their merit, cross-experiment generalization performance as
reported in [SWL+11] could be vastly improved, and data with smaller nano-objects, down
to 100 nm in diameter, can now be analyzed reliably. Corresponding evaluations are provided
in Chapter 7.

259

The evaluation capabilities of SynOpSis were furthermore used in [STM+15] to which the
author contributed the analysis software created in collaboration with P. Libuschewski as
described above. The paper applies SynOpSis for the detection of inactivated influenza A
viruses and Virus-Like Particles (VLPs) of the Human Immunodeficiency Virus (HIV). VLPs
are virus envelope proteins which are non-infectious because they are assembled without
incorporating the genetic information necessary for reproduction [GA06]. Furthermore,
SynOpSis served in proving the specificity of the individual virus-antibody binding events that
the sensor allows to resolve. Automatic virus detection was applied, after its parameters had
been optimized by SynOpSis, thus facilitating data analysis for the conducted experiments
and making it repeatable. This was of particular importance in proving sensor specificity, as
it involves comparison of results from experiments with different types of viruses.

Acronyms

k-NN k-Nearest Neighbors. 41, 66, 107–109, 113–117, 119, 125, 127, 138, 154, 157, 162–164,
171–174, 176, 246, 255, 257, 264

AABB Axis-Aligned Bounding Box. 146, 178
ABUS Automated Whole Breast Ultrasound. 30
ACO Ant Colony Optimization. 48
AdaBoost Adaptive Boosting. 30
ADASYN Adaptive Synthetic Sampling. 153–156, 175–177
AUC Area under the ROC Curve. 45, 253

BFGS Broyden-Fletcher-Goldfarb-Shanno. 24, 25, 47
BICO BIRCH Meets Coresets. 109, 113, 114, 119, 125, 246, 257
BIRCH Balanced Iterative Reducing and Clustering Using Hierarchies. 114

CADe Computer-Aided Detection. 30
CART Classification and Regression Tree. 165–167
CCD Charge-Coupled Device. 12, 15, 73, 75, 91, 98, 99, 185–187, 190
CMA-ES Covariance Matrix Adaptation Evolution Strategy. 24, 25
CNN Convolutional Neural Network. 246
CPU Central Processing Unit. 125, 222
CSV Comma-Separated Values. 170

D-Diff D-Rate Difference. 217–219
D-Rate Deviation-Rate. 192, 193, 204, 207, 209, 211–213, 215–219, 234–239
D-Summary D-Rate Summary. 208–211
DBN Deep Belief Network. 25
DF Desirability Function. 59–63, 169, 195–197, 202, 209, 245, 262
DI Desirability Index. 59, 61–63, 68, 161, 169, 196, 197, 199–202, 209, 212, 230–233, 245,

262
DOI Digital Object Identifier. 187
DWT Discrete Wavelet Transform. 109

EA Evolutionary Algorithm. 24, 26, 48
ECJ Java-Based Evolutionary Computation Research System. 258
EI Expected Improvement. 25
EM Electron Microscopy. 11
EMG Electromyogram. 150

FACT First G-APD Cherenkov Telescope. 249
FN False Negative. 36–38, 40, 43–45, 136, 137, 182, 192, 193, 203, 204, 207, 251, 252
FOCAS Faint Object Classification and Analysis System. 31
FP False Positive. 30, 36–40, 42–45, 75, 83, 84, 99, 136–138, 143, 169, 177, 192, 193, 196,

203, 204, 207, 215, 216, 219–221, 238, 251, 252
FPS Frames per Second. 186, 187, 221, 222

261

262 Acronyms

G-APD Geiger-Mode Avalanche Photodiode. 249
GA Genetic Algorithm. 47–52, 54, 68, 161, 169–171, 175, 178, 190, 193, 222, 237, 263, 264
GAT Generalized Anscombe Transform. 29, 91
GGA Gender-Based Genetic Algorithm. 26
GP Gaussian Process. 244
GPU Graphics Processing Unit. v, 25, 30, 50, 82, 96, 101, 104, 119, 125–127, 138, 144, 145,

152, 162, 167, 200, 222, 244, 247, 257

HIV Human Immunodeficiency Virus. 242, 243, 259
HOG Histogram of Oriented Gradients. 28

IQR Interquartile Range. 172, 173, 207, 209, 211
ISAS Leibniz-Institut für Analytische Wissenschaften. 257

JGAP Java Genetic Algorithms Package. 257, 258

KVM Kernel-Based Virtual Machine. 170

LDA Linear Discriminant Analysis. 30
LHD Latin Hypercube Design. 24, 25, 47
LTE Long-Term Evolution. 247

M-Rate Multi-Detection-Rate. 39, 40, 58, 135, 137, 191, 195, 196, 198, 200–203, 207, 209,
212, 215, 216, 218, 219, 228, 230–232, 234, 236–238

MA Memetic Algorithm. 48
MAE Mean Absolute Error. 216, 218, 219, 231–233
MAGIC Major Atmospheric Gamma Imaging Cherenkov Telescopes. 72, 248, 249
MAP Maximum a Posteriori. 167, 168
MC Monte Carlo. 72, 248, 249
MOEA Multi-Objective Evolutionary Algorithm. 26
MOGA Multi-Objective Genetic Algorithm. 47, 49–51, 54–56, 59, 61, 63, 68, 193, 194, 199
MPG Mixed-Poisson-Gaussian. 29, 31, 91
MSER Maximally Stable Extremal Regions. 28

NaCl Sodium Chloride. 186, 187
NPV Negative Predictive Value. 252
NSGA-II Non-Dominated Sorting Genetic Algorithm II. 47, 49, 50, 55–58, 193, 194
NSGA-III Non-Dominated Sorting Genetic Algorithm III. 194

OBB Oriented Bounding Box. 146, 178

PAES Pareto Archived Evolution Strategy. 49, 56
PAMONO Plasmon-Assisted Microscopy of Nano-Sized Objects. v, 2–13, 15–19, 21, 22, 24,

25, 27–30, 32–36, 38, 39, 42–44, 46–50, 59, 63, 67–69, 71–79, 82–87, 90–94, 96, 98–100,
104, 108–110, 115, 116, 119, 123, 125, 127–129, 133, 135, 138, 139, 141–143, 145, 147,
148, 150, 152–154, 157, 159, 161–163, 168–172, 176, 179, 181, 182, 184–191, 195, 200,
204–206, 209, 212, 217, 218, 220–223, 233, 237, 239, 241–249, 257, 258, 261–263

PBS Phosphate Buffered Saline. 186, 187
PCC Pearson Product-Moment Correlation Coefficient. 231, 232

Acronyms 263

POC Point of Care. 2
PPV Positive Predictive Value. 251
PSF Point Spread Function. 27, 29
PSO Particle Swarm Optimization. 48

RBF Radial Basis Function. 27, 28, 165, 171
RMSE Root Mean Squared Error. 231–233
ROC Receiver Operating Characteristic. 45, 253
ROI Region of Interest. 186, 187

SAT Propositional Satisfiability Problem. 26, 32
SMOTE Synthetic Minority Over-Sampling Technique. 153–156, 176
SMS-EMOA S-Metric Selection Evolutionary Multi-Objective Optimization Algorithm.

49, 56
SNR Signal-to-Noise Ratio. v, 4, 11, 13, 15, 27, 29–31, 86, 88–90, 96, 105, 106, 123, 124,

127, 131, 185, 187–190, 212, 214–216, 227, 235, 236, 238, 239, 241, 244
SPEA2 Strength Pareto Evolutionary Algorithm 2. 49, 56
SPOT Sequential Parameter Optimization Toolbox. 24, 25
SPR Surface Plasmon Resonance. v, 9–12, 73, 74, 105, 106, 123, 185, 241
STED Stimulated Emission Depletion. 10
STORM Stochastic Optical Reconstruction Microscopy. 10
SVM Support Vector Machine. 27, 28, 39, 41, 154, 157, 162–165, 167, 171–174, 182
SynOpSis Synthesis/Optimization/Analysis. 6–8, 18, 20–22, 25–35, 37, 41, 42, 44–48, 50,

56, 58–63, 65, 66, 68, 69, 71, 72, 75, 77–79, 82, 84, 127, 133, 135, 138, 139, 142, 144,
145, 154, 156, 158, 159, 161–163, 165, 167–177, 179, 180, 182, 184–186, 190, 193, 194,
196–200, 202–204, 206, 209, 211, 212, 215–217, 221–223, 230, 233, 237–239, 241–243,
245–249, 251, 257–259, 261

TI Translation-Invariant/Translation-Invariance. 107–111, 119, 123, 125–127, 255, 257, 258,
264

TN True Negative. 36, 37, 43–45, 137, 203, 204, 220, 251, 252
TP True Positive. 30, 36–40, 42–45, 84, 135–138, 143, 183, 191–193, 203, 204, 238, 251, 252

U-NSGA-III Unified Non-Dominated Sorting Genetic Algorithm III. 194

VLP Virus-Like Particle. 185, 243, 259
VM Virtual Machine. 170
VST Variance Stabilizing Transform. 29, 31, 91

Mathematical Symbols

General Rules

N Scalar integers representing cardinalities, e.g. the total number of elements in a set, a
vector or a matrix dimension are indicated by upper case letters.

r Any other scalars, including integers, real numbers and class labels, are indicated by
lower case letters.

v Vectors are indicated by bold type lower case letters.
vi Vector components vi are indicated by lower case letters equal to the letter of the full

vector v they originate from. Indexing is done with subscripts.
M Matrices are indicated by bold type upper case letters.
mi,j Matrix entries mi,j are indicated by lower case letters equal to the letter of the matrix

M they originate from. Indexing is done with double subscripts.
S Sets are indicated by upper case letters, exactly like scalar integers representing cardi-

nalities (cf. first point). Confusion of the two should be precluded by the respective
context of appearance.

si Set elements si are indicated by lower case letters equal to the letter of the set S they
originate from. Indexing is done with subscripts. Confusion with vector components
should be precluded by the respective context of appearance.

xa Different instances of a symbol are distinguished by superscripts, e.g. xa and xb are two
possibly different vectors. Subscripts and superscripts are combinable, e.g. xai denotes
the ith component of vector xa. Confusion with exponents should be precluded by the
respective context of appearance.

α Functions are indicated by Greek upper or lower case letters. This includes those upper
case Greek letters that exist as well in the Latin alphabet, i.e. the letters A, B, E, Z,
H, I, K, M , N , O, P , T , Y , X.

In rare cases, exceptions to these rules are made. These serve to follow established conventions
of mathematical nomenclature. Duplicate symbol names are avoided wherever possible. In
case they could not be avoided without compromising the wish for intuitive names, all
meanings are given in the following list, separated with (a) and (b). These cases are rare and
it should always be clear from the context of symbol usage, which meaning is intended.

Parameters Being Optimized by SynOpSis

All parameters that are optimized by SynOpSis are summarized in respective sections in
the text. For the parameters of the pattern detector, cf. Table 5.6 in Section 5.7. For the
parameters of the classifier, cf. Table 6.2 in Section 6.8.

Functions (Greek Letters)

A(x, y, t), A∶ N3
>0 → R Artifacts signal component in PAMONO sensor data, evaluated at

location x, y and time t. The properties of this component are similar to those of the
target patterns signal T (x, y, t), but A(x, y, t) contains the non-target patterns.

265

266 Mathematical Symbols

B(x, y), B∶ N2
>0 → R Background signal component in PAMONO sensor data, evaluated at

location x, y. This component is modeled as being constant over time. Any deviation
from the constancy assumption is regarded as an artifact and hence belongs to the
A(x, y, t) signal.

Γ(x, y, t), Γ∶ N3
>0 → {0,1} Binary class mask, ascribing each spatiotemporal coordinate x, y, t

either to the positive class (up/down signals caused by nano-object adhesions) indicated
by value one, or to the negative class (background, no nano-object adhesion) indicated
by value zero.

γ(x, y), γ∶ N2
>0 → {0,1} Abbreviation to denote one 2-D spatial image from the class mask Γ

at a certain point in time t, i.e. γ(○, ○) = Γ(○, ○, t) for some t.
∆(y), ∆∶ RO →]0,1] Desirability Index (DI) of objective values y from objective space.
δ(yi), δ∶ R→]0,1] Desirability Function (DF) of objective value yi.
ζ l1,l2isLarge(d), ζ

l1,l2
isLarge∶ R→ [0,1] Membership of absolute intensity difference d in the fuzzy set

of large values (used in fuzzy denoising).
ζs1,s2isPos(m), ζs1,s2isPos ∶ [0,1] → [0,1] Membership of matching score m in the fuzzy set of values

possibly affected by a nano-object adhesion (used in fuzzy classification).
ζs1,s2fringe(m), ζs1,s2fringe∶ [0,1] → [0,1] Membership of matching score m in the fuzzy set of values

in the fringe of a nano-object adhesion (used in fuzzy classification).
ζs1,s2time (m), ζs1,s2time ∶ [0,1] → [0,1] Fuzzy rule realizing a temporal dilation of matching scores

m (used in fuzzy classification).
ζs1,s2up∪down(m), ζs1,s2up∪down∶ [0,1] → [0,1] Fuzzy rule for the class of up/down signals (used in

fuzzy classification).
ζs1,s2background(m), ζs1,s2background∶ [0,1] → [0,1] Fuzzy rule for the class of background signals (used

in fuzzy classification).
Hσ(x, y), Hσ ∶ N2

>0 → R2×2 Hessian matrix of η(x, y) on scale σ, i.e. computed by convolving
η(x, y) with Gaussian derivative kernels of standard deviation σ.

η(x, y), η∶ N2
>0 → R Shorthand notation for a 2-D image (T ⋅A)(x, y, tc) at a certain temporal

coordinate tc.
I(x, y, t), I ∶ N3

>0 → R Composite PAMONO sensor signal, evaluated at location x, y and
time t. This is the signal that is measured by the sensor. It consists of several
components, as described by Equation (4.1).

IT=1(x, y, t), IT=1∶ N3
>0 → R Composite PAMONO sensor signal during background measure-

ment, evaluated at location x, y and time t. The target patterns component T (x, y, t)
is constantly one (neutral in the multiplicative signal model in Equation (4.1)) because
during background measurements there are no target patterns in the flow cell of the
sensor.

Ĩ(x, y, t), Ĩ ∶ N3
>0 → R Composite synthetic PAMONO sensor signal, evaluated at location x, y

and time t. Ground truth pattern locations and classification are known for this signal.
ι(x, y), ι∶ N2

>0 → R Single image I(○, ○, tc) at a given time tc.
κavg(x, y), κavg∶ N2

>0 → R 2-D averaging filter kernel.
κGauß(x, y ∣ σGauß), κGauß∶ N2

>0 → R 2-D Gauß filter kernel with standard deviation σGauß.
κSE(x, y), κSE∶ N2

>0 → {0,1} Structuring element used in morphological operators.
Λ(k,S) denotes the k-th largest element in the ordered multiset S.
M(x, y, t), M ∶ N3

>0 → R Matching score in template matching as attained at spatiotemporal
coordinate (x, y, t).

Mathematical Symbols 267

µ (○) Mean value of an arbitrary number of numerical input values (represented by the
wildcard symbol “○”), cf. Equation (5.16).

N(x, y, t), N ∶ N3
>0 → R Noise component in PAMONO sensor data, at location x, y and

time t.
ξ(f) = ci, ξ∶ RF → {c1, . . . , cC} Classifying model, mapping a feature vector f from the feature

space RF to a class label ci from the set of labels {c1, . . . , cC}.
P (f), P ∶ RF → [0,1] Probability of observing feature vector f .
P (ck), P ∶ {c1, . . . , cC} → [0,1] Probability of observing class label ck (prior).
P (f ∣ ck), P ∶ RF × {c1, . . . , cC} → [0,1] Conditional probability of observing feature vector f ,

given that class label ck has been observed (likelihood).
P (ck ∣ f), P ∶ {c1, . . . , cC} ×RF → [0,1] Conditional probability of observing class label ck,

given that feature vector f has been observed (posterior probability).
ρ(x, y, tc), ρ∶ N3

>0 → R The past signal at time tc, cf. Definition 5.1 for details.
σ (○) Standard deviation of an arbitrary number of numerical input values (represented by

the wildcard symbol “○”), cf. Equation (5.17).
T (x, y, t), T ∶ N3

>0 → R Target patterns signal component in PAMONO sensor data, evaluated
at location x, y and time t. This is the desired signal of the measurement because it
can serve as an indirect proof for nano-objects attaching to the sensor surface.

T̃ (x, y, t), T̃ ∶ N3
>0 → R Synthetic target patterns signal component in PAMONO sensor data,

evaluated at location x, y and time t. Ground truth is known for this signal component.
φ(x, y, tc), φ∶ N3

>0 → R The present signal at time tc, cf. Definition 5.1 for details.
ϕi(x) = yi, ϕi∶ PP → R The ith objective function (synonymously: fitness function) assigning

parameter space point x ∈ PP its value yi in the ith objective, cf. also y.
ω(x, y), ω∶ N2

>0 → R Result of denoising ι(x, y).

Other Symbols

○ is the wildcard symbol for function arguments, i.e. a placeholder for the set of all possible
values of a function argument. As an example, I(○, ○, t) denotes the 2-D projection of
I, for which the third component has the value t.

a ∈ R The number of detector responses is allowed to be at most a times the number of
ground truth target patterns in the early cancellation criterion for parameter sets in
optimization, cf. Section 5.8.

C ∈ N>0 Number of classes.
ci Name of ith class.
E (a) Elite size in a Genetic Algorithm (GA), then E ∈ N>0.

(b) Number of examples in a dataset, then E ∈ N≥0.
E ∈ NC×C≥0 Confusion matrix.
ei,j ∈ N≥0 Confusion matrix entry equaling the number of examples that were predicted to

belong to class ci, while ground truth assigns them to class cj .
F ∈ RE×F Feature matrix with E examples as row vectors in an F -dimensional feature space.
fe,i ∈ R Entry of F corresponding to the value of feature i as observed in the eth example.
F̂ ∈ RE×F Normalization result of feature matrix F.
f̂e,i ∈ R Entry of F̂ corresponding to the normalized value of feature i as observed in the eth

example.
F ∈ N>0 Number of features and hence dimension of feature space RF .

268 Mathematical Symbols

f ∈ RF Feature vector from the feature space RF .
G (a) Number of generations in a genetic algorithm, then G ∈ N>0.

(b) Number of target patterns in the ground truth, then G ∈ N≥0.
Km Number of cluster centers per class as computed by the k-Means algorithm during TI

wavelet feature-based time series classification in Section 5.5.
Kn Number of neighbors regarded in k-NN during TI wavelet feature-based time series

classification in Section 5.5.
LX,Y,T = {m1, . . . ,mXY T } Local neighborhood multiset of matching scores fromM , occurring

in a local cuboid with side-lengths X,Y,T in the horizontal, vertical and temporal
directions. The cuboid is placed with its center at the spatiotemporal coordinate
(xc, yc, tc) for which LX,Y,T is computed. This coordinate is omitted from the symbol
LX,Y,T to avoid notational clutter.

m ∈ R Shorthand notation for an individual matching score in template matching, i.e. m =
M(xc, yc, tc) for a certain spatiotemporal coordinate (xc, yc, tc).

N>0 Set of natural numbers excluding zero.
N≥0 Set of natural numbers including zero.
O ∈ N>0 Number of objectives, i.e. the dimensionality of objective space RO.
oi ∈ R Offset for normalizing the ith feature.
PP Parameter space with P dimensions. Note the mixed nature of PP : Each dimension

may be from a different set, e.g. boolean, ordered/unordered discrete values or real
values. The P is therefore a placeholder for other sets.

P Number of parameters, i.e. the dimensionality of parameter space.
p ∈ {c1, . . . , cC} Predicted class label.
R Set of real numbers.
S ∈ N>0 (a) Population size in a Genetic Algorithm (GA).

(b) Number of scales regarded in TI wavelet decomposition.
si ∈ R Scale factor for normalizing the ith feature.
T ∈ N>0 (a) Length of a time series that has been written as a vector, e.g. v ∈ RT .

(b) Tournament size in a Genetic Algorithm (GA).
t ∈ RT Ideal template time series, written as a vector.
t (a) True class label, then t ∈ {c1, . . . , cC}.

(b) Temporal coordinate, then t ∈ N>0.
v ∈ RT An observed time series, written as a vector.
Ŵ ∈ RS×T TI wavelet coefficient table for a time series v ∈ RT over S = log(T) scales.
W ∈ RS×T W is obtained from Ŵ by taking the absolute values of all coefficients in Ŵ,

followed by sorting each scale (row) separately by descending absolute coefficient value,
making W invariant to circular shifts in the underlying time series v.

ws,t ∈ R≥0 Entry of TI wavelet coefficient table W, yielding the tth-largest coefficient on
scale s.

x ∈ PP Point in parameter space.
xi ∈ P Value of the ith parameter. P is a placeholder for the set from which xi may be

selected.
x ∈ N>0 Horizontal spatial coordinate.
y ∈ RO Point in objective space, obtained as (ϕ1(x) . . . ϕO(x)).
yi ∈ R Value of the ith objective, obtained as ϕi(x).
y ∈ N>0 Vertical spatial coordinate.

Bibliography

[AB94] D. Altman and J. Bland. “Statistics Notes: Diagnostic Tests 2: Predictive
Values”. In: BMJ 309.6947 (1994), p. 102 (Cited on pages 251 sq.).

[Abb73] E. Abbe. “Beiträge zur Theorie des Mikroskops und der mikroskopischen
Wahrnehmung”. In: Archiv für Mikroskopische Anatomie 9.1 (1873), pp. 413–
418 (Cited on pages 9, 27, 29).

[AH01] S. Aksoy and R. M. Haralick. “Feature Normalization and Likelihood-Based
Similarity Measures for Image Retrieval”. In: Pattern Recognition Letters 22.5
(2001), pp. 563–582 (Cited on pages 157 sq.).

[ALN+12] C. Arteta, V. Lempitsk, J. A. Noble, and A. Zisserman. “Learning to Detect
Cells Using Non-Overlapping Extremal Regions”. In: Medical Image Computing
and Computer-Assisted Intervention (MICCAI). 2012, pp. 348–356 (Cited on
pages 2 sq., 27 sqq., 39, 248).

[Alp97] E. Alpaydin. “Voting Over Multiple Condensed Nearest Neighbors”. In: Artifi-
cial Intelligence Review 11.1–5 (1997), pp. 115–132 (Cited on page 109).

[Ang05] F. Angiulli. “Fast Condensed Nearest Neighbor Rule”. In: Proceedings of the
22nd International Conference on Machine Learning (ICML). 2005, pp. 25–32
(Cited on page 109).

[ARR+07] N. Agrawal, G. P. Rangaiah, A. K. Ray, and S. K. Gupta. “Design Stage
Optimization of an Industrial Low-Density Polyethylene Tubular Reactor for
Multiple Objectives Using NSGA-II and Its Jumping Gene Adaptations”. In:
Chemical Engineering Science 62.9 (2007), pp. 2346–2365 (Cited on pages 49,
56).

[AST09] C. Ansótegui, M. Sellmann, and K. Tierney. “A Gender-Based Genetic Al-
gorithm for the Automatic Configuration of Algorithms”. In: Principles and
Practice of Constraint Programming. Springer, 2009, pp. 142–157 (Cited on
pages 23, 26, 48 sq.).

[AV07] D. Arthur and S. Vassilvitskii. “k-Means++: The Advantages of Careful Seed-
ing”. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2007, pp. 1027–1035 (Cited on page 114).

[BB00] Y. M. Blanter and M. Buttiker. “Shot Noise in Mesoscopic Conductors”. In:
Physics Reports 336.1 (2000), pp. 1–166 (Cited on pages 15, 29, 75).

[BB12] J. Bergstra and Y. Bengio. “Random Search for Hyper-Parameter Optimiza-
tion”. In: The Journal of Machine Learning Research 13.1 (2012), pp. 281–305
(Cited on pages 47, 49 sq., 244).

[BBB+11] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. “Algorithms for Hyper-
Parameter Optimization”. In: Advances in Neural Information Processing
Systems (NIPS). 2011, pp. 2546–2554 (Cited on pages 3, 23, 25, 46, 48, 63,
229, 244 sq., 247).

269

270 Bibliography

[BFS+84] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and
Regression Trees. CRC Press, 1984 (Cited on pages 165 sq.).

[BKG11] M. Buhrmester, T. Kwang, and S. D. Gosling. “Amazon’s Mechanical Turk:
A New Source of Inexpensive, Yet High-Quality, Data?” In: Perspectives on
Psychological Science 6.1 (2011), pp. 3–5 (Cited on pages 127, 246).

[BKL+13] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan.
“Mixed-Integer Nonlinear Optimization”. In: Acta Numerica 22 (2013), pp. 1–
131 (Cited on page 49).

[BL03] D. C. Banks and S. Linton. “Counting Cases in Marching Cubes: Toward a
Generic Algorithm for Producing Substitopes”. In: Proceedings of the 14th
IEEE Visualization Conference (VIS 03). 2003, pp. 51–58 (Cited on pages 128–
131).

[BLP10] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. “The Sequential Parameter
Optimization Toolbox”. In: Experimental Methods for the Analysis of Opti-
mization Algorithms. 2010, pp. 337–362 (Cited on pages 23 sq., 48, 229, 245,
247).

[BM91] B. Bourguignon and D. L. Massart. “Simultaneous Optimization of Several
Chromatographic Performance Goals Using Derringer’s Desirability Function”.
In: Journal of Chromatography A 586.1 (1991), pp. 11–20 (Cited on page 59).

[BMT+12] B. Bischl, O. Mersmann, H. Trautmann, and C. Weihs. “Resampling Methods
for Meta-Model Validation with Recommendations for Evolutionary Compu-
tation”. In: Evolutionary Computation 20.2 (2012), pp. 249–275 (Cited on
pages 23, 25, 48, 229, 245, 247).

[BN07] E. G. Bekele and J. W. Nicklow. “Multi-Objective Automatic Calibration of
SWAT Using NSGA-II”. In: Journal of Hydrology 341.3 (2007), pp. 165–176
(Cited on pages 49, 56).

[BNE07] N. Beume, B. Naujoks, and M. Emmerich. “SMS-EMOA: Multiobjective Selec-
tion Based on Dominated Hypervolume”. In: European Journal of Operational
Research 181.3 (2007), pp. 1653–1669 (Cited on pages 49, 56).

[Bre01] L. Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32
(Cited on pages 25, 41, 142, 157, 165 sqq., 172, 228 sq., 244, 258).

[Bre96] L. Breiman. “Bagging Predictors”. In: Machine Learning 24.2 (1996), pp. 123–
140 (Cited on page 165).

[Bru07] T. Bruckhaus. “The Business Impact of Predictive Analytics”. In: Knowledge
Discovery and Data Mining. Challenges and Realities. Information Science
Reference, 2007, pp. 114–138 (Cited on page 126).

[BSB+04] P. M. Boltovets, B. A. Snopok, V. R. Boyko, T. P. Shevchenko, N. S. Dyachenko,
and Y. M. Shirshov. “Detection of Plant Viruses Using a Surface Plasmon
Resonance via Complexing with Specific Antibodies”. In: Journal of Virological
Methods 121.1 (2004), pp. 101–106 (Cited on page 10).

[BSP+02] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. “A Racing Algorithm
for Configuring Metaheuristics”. In: Genetic and Evolutionary Computation
Conference (GECCO). Vol. 2. 2002, pp. 11–18 (Cited on pages 23, 48).

Bibliography 271

[Bur98] C. J. C. Burges. “A Tutorial on Support Vector Machines for Pattern Recog-
nition”. In: Data Mining and Knowledge Discovery 2.2 (1998), pp. 121–167
(Cited on pages 163, 165, 171).

[BYB+10] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. “F-Race and Iterated F-
Race: An Overview”. In: Experimental Methods for the Analysis of Optimization
Algorithms. Springer, 2010, pp. 311–336 (Cited on pages 23 sq., 48).

[CBH+02] N. V. Chawla, K. W. Bowyer, L. Hall, and W. P. Kegelmeyer. “SMOTE: Syn-
thetic Minority Over-Sampling Technique”. In: Journal of Artificial Intelligence
Research 16 (2002), pp. 321–357 (Cited on pages 153 sqq.).

[CD95] R. R. Coifman and D. L. Donoho. Translation-Invariant De-Noising. Springer,
1995 (Cited on pages 107, 109 sq., 255).

[CGK+92] J.-N. Capdevielle, P. Grieder, J. Knapp, P. Gabriel, H. J. Gils, D. Heck, H. J.
Mayer, J. Oehlschläger, H. Rebel, G. Schatz, et al. The Karlsruhe Extensive Air
Shower Simulation Code CORSIKA. Tech. rep. Kernforschungszentrum Karls-
ruhe GmbH (Germany). Institut für Kernphysik, 1992 (Cited on page 249).

[Chi92] N. Chinchor. “MUC-4 Evaluation Metrics”. In: Proceedings of the Fourth
Message Understanding Conference. 1992, pp. 22–29 (Cited on pages 45, 252).

[CKB+05] J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun. “Application of
SPR Biosensor for Medical Diagnostics of Human Hepatitis B Virus (hHBV)”.
In: Sensors and Actuators B: Chemical 111 (2005), pp. 416–422 (Cited on
page 10).

[CM02] D. Comaniciu and P. Meer. “Mean Shift: A Robust Approach Toward Feature
Space Analysis”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 24.5 (2002), pp. 603–619 (Cited on page 28).

[CMO97] R. E. Caflisch, W. J. Morokoff, and A. B. Owen. Valuation of Mortgage Backed
Securities Using Brownian Bridges to Reduce Effective Dimension. Department
of Mathematics, University of California, Los Angeles (UCLA), 1997 (Cited
on page 50).

[COM15] COMSOL. COMSOL Multiphysics. Commercial Software. 2015. url: https:
//www.comsol.com/ (Cited on page 72).

[Con99] W. J. Conover. Practical Nonparametric Statistics. Wiley, 1999 (Cited on
page 23).

[CS00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines and Other Kernel-Based Learning Methods. Cambridge University Press,
2000 (Cited on page 171).

[CWG01] M. K. Cheezum, W. F. Walker, and W. H. Guilford. “Quantitative Compari-
son of Algorithms for Tracking Single Fluorescent Particles”. In: Biophysical
Journal 81.4 (2001), pp. 2378–2388 (Cited on pages 4, 187, 190, 215).

[Dan98] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1998 (Cited on page 48).

[DB05] M. Dorigo and C. Blum. “Ant Colony Optimization Theory: A Survey”. In:
Theoretical Computer Science 344.2 (2005), pp. 243–278 (Cited on page 48).

https://www.comsol.com/
https://www.comsol.com/

272 Bibliography

[DE13] M. Doert and M. Errando. “High Confidence AGN Candidates Among Uniden-
tified Fermi-Lat Sources via Statistical Classification”. In: Proceedings of the
International Cosmic Ray Conference (ICRC). 2013 (Cited on pages 2, 248).

[Deb01] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
2001 (Cited on pages 21, 26, 48, 54 sq.).

[DK07] K. Deb and S. Karthik. “Dynamic Multi-Objective Optimization and Decision-
Making Using Modified NSGA-II: A Case Study on Hydro-Thermal Power
Scheduling”. In: Evolutionary Multi-Criterion Optimization. 2007, pp. 803–817
(Cited on pages 49, 56).

[DK13] A. Donath and D. Kondermann. “Is Crowdsourcing for Optical Flow Ground
Truth Generation Feasible?” In: Computer Vision Systems. Springer, 2013,
pp. 193–202 (Cited on pages 127, 246).

[DK77] K. Dines and A. C. Kak. “Constrained Least Squares Filtering”. In: IEEE
Transactions on Acoustics, Speech and Signal Processing 25.4 (1977), pp. 346–
350 (Cited on page 34).

[DMS06] D. Donoho, A. Maleki, and M. Shahram. Wavelab 850. Software Toolkit for
Time-Frequency Analysis. Stanford University, Department of Statistics. 2006.
url: http://statweb.stanford.edu/~wavelab/ (Cited on page 255).

[Dom99] P. Domingos. “Metacost: A General Method for Making Classifiers Cost-
Sensitive”. In: Proceedings of the Fifth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. 1999, pp. 155–164 (Cited on
page 153).

[DPA+02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A Fast and Elitist Multiob-
jective Genetic Algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary
Computation 6.2 (2002), pp. 182–197 (Cited on pages 49 sq., 55 sq., 58, 193 sq.).

[DPM00] K. Deb, A. Pratap, and S. Moitra. “Mechanical Component Design for Multiple
Objectives Using Elitist Non-Dominated Sorting GA”. In: Parallel Problem
Solving from Nature (PPSN VI). 2000, pp. 859–868 (Cited on pages 49, 56).

[DS80] G. C. Derringer and D. Suich. “Simultaneous Optimization of Several Response
Variables”. In: Journal of Quality Technology 12.4 (1980), pp. 214–219 (Cited
on page 61).

[DT05] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human De-
tection”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Vol. 1. 2005, pp. 886–893 (Cited on page 28).

[DT14] W. Duivesteijn and J. Thaele. Understanding Where Your Classifier Does
(Not) Work – The SCaPE Model Class for Exceptional Model Mining. Tech. rep.
TU Dortmund University, 2014 (Cited on pages 2, 249).

[EMY+08] D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez. “Nanobiosensors:
Optofluidic, Electrical and Mechanical Approaches to Biomolecular Detection
at the Nanoscale”. In: Microfluidics and Nanofluidics 4.1–2 (2008), pp. 33–52
(Cited on page 2).

http://statweb.stanford.edu/~wavelab/

Bibliography 273

[FA91] W. T. Freeman and E. H. Adelson. “The Design and Use of Steerable Filters”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
13.9 (1991), pp. 891–906 (Cited on page 148).

[Faw06] T. Fawcett. “An Introduction to ROC Analysis”. In: Pattern Recognition
Letters 27.8 (2006), pp. 861–874 (Cited on pages 45, 253).

[FCN+13] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. “Learning Hierarchical
Features for Scene Labeling”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) 35.8 (2013), pp. 1915–1929 (Cited on page 246).

[FGS+13] H. Fichtenberger, M. Gillé, M. Schmidt, C. Schwiegelshohn, and C. Sohler.
“BICO: BIRCH Meets Coresets for k-means Clustering”. In: Algorithms – ESA
2013. Springer, 2013, pp. 481–492 (Cited on pages 107, 109, 113 sq., 246, 257).

[Fle08] T. Fletcher. Support Vector Machines Explained. University College London
(UCL). 2008. url: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.164.3457 (Cited on page 165).

[FM06] H. Faraji and W. J. MacLean. “CCD Noise Removal in Digital Images”. In:
IEEE Transactions on Image Processing 15.9 (2006), pp. 2676–2685 (Cited on
pages 15, 29, 75, 187).

[FS97] Y. Freund and R. E. Schapire. “A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting”. In: Journal of Computer and
System Sciences 55.1 (1997), pp. 119–139 (Cited on pages 28, 30, 167).

[GA06] E. V. L. Grgacic and D. A. Anderson. “Virus-Like Particles: Passport to
Immune Recognition”. In: Methods 40.1 (2006), pp. 60–65 (Cited on pages 185,
243, 259).

[GBG05] C. Guria, P. K. Bhattacharya, and S. K. Gupta. “Multi-Objective Optimization
of Reverse Osmosis Desalination Units Using Different Adaptations of the Non-
Dominated Sorting Genetic Algorithm (NSGA)”. In: Computers & Chemical
Engineering 29.9 (2005), pp. 1977–1995 (Cited on pages 49, 56).

[GBP+06] J. L. Greenwald, G. R. Burstein, J. Pincus, and B. Branson. “A Rapid Review
of Rapid HIV Antibody Tests”. In: Current Infectious Disease Reports 8.2
(2006), pp. 125–131 (Cited on page 243).

[GE03] I. Guyon and A. Elisseeff. “An Introduction to Variable and Feature Selection”.
In: The Journal of Machine Learning Research 3 (2003), pp. 1157–1182 (Cited
on pages 159 sq.).

[GK79] K. C. Gowda and G. Krishna. “The Condensed Nearest Neighbor Rule Using
the Concept of Mutual Nearest Neighborhood”. In: IEEE Transactions on
Information Theory 25.4 (1979), pp. 488–490 (Cited on page 109).

[GTÜ+11] E. L. Gurevich, V. Temchura, K. Überla, and A. Zybin. “Analytical Features
of Particle Counting Sensor Based on Plasmon Assisted Microscopy of Nano
Objects”. In: Sensors and Actuators B: Chemical 160.1 (2011), pp. 1210–1215
(Cited on pages 152, 241).

[GW07] R. C. Gonzalez and R. E. Woods. Digital Image Processing 3rd Edition. Prentice
Hall, 2007 (Cited on pages 31, 91–94, 115, 128, 148).

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.164.3457
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.164.3457

274 Bibliography

[Han06] N. Hansen. “The CMA Evolution Strategy: A Comparing Review”. In: To-
wards a New Evolutionary Computation. Springer, 2006, pp. 75–102 (Cited on
page 24).

[Har65] J. Harrington. “The Desirability Function”. In: Industrial Quality Control
21.10 (1965), pp. 494–498 (Cited on pages 59 sq., 195).

[HBG+08] H. He, Y. Bai, E. A. Garcia, and S. Li. “ADASYN: Adaptive Synthetic Sampling
Approach for Imbalanced Learning”. In: IEEE International Joint Conference
on Neural Networks (IJCNN). 2008, pp. 1322–1328 (Cited on pages 153, 155,
258).

[HBK10] B. Huang, B. Buckley, and T.-M. Kechadi. “Multi-Objective Feature Selection
by Using NSGA-II for Customer Churn Prediction in Telecommunications”.
In: Expert Systems with Applications 37.5 (2010), pp. 3638–3646 (Cited on
pages 49, 56).

[HBR+08] J. W. Han, T. Breckon, D. Randell, and G. Landini. “Radicular Cysts and
Odontogenic Keratocysts Epithelia Classification Using Cascaded Haar Clas-
sifiers”. In: Proceedings of the Twelfth Annual Conference of Medical Image
Understanding and Analysis. 2008, pp. 54–58 (Cited on pages 2, 27 sq., 30, 72,
167, 248).

[HBR+12] J. W. Han, T. Breckon, D. Randell, and G. Landini. “The Application of
Support Vector Machine Classification to Detect Cell Nuclei for Automated
Microscopy”. In: Machine Vision and Applications 23.1 (2012), pp. 15–24
(Cited on pages 2, 15, 19, 27, 32, 39, 72, 248).

[HCL03] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A Practical Guide to Support Vector
Classification. Department of Computer Science, National Taiwan University.
(Last updated 2010). 2003 (Cited on pages 157 sq., 163, 165, 171).

[HG09] H. He and E. A. Garcia. “Learning from Imbalanced Data”. In: IEEE Transac-
tions on Knowledge and Data Engineering 21.9 (2009), pp. 1263–1284 (Cited
on pages 26, 38, 44, 144, 152–155, 176, 251).

[HHL+09] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. “ParamILS: An
Automatic Algorithm Configuration Framework”. In: Journal of Artificial
Intelligence Research 36.1 (2009), pp. 267–306 (Cited on pages 23, 48).

[HHL11] F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Sequential Model-Based Opti-
mization for General Algorithm Configuration”. In: Learning and Intelligent
Optimization. Springer, 2011, pp. 507–523 (Cited on pages 23, 25, 48, 229, 245,
247).

[Hil85] A. M. Hillas. “Cerenkov Light Images of EAS Produced by Primary Gamma”.
In: Proceedings of the International Cosmic Ray Conference (ICRC). 1985,
pp. 445–448 (Cited on page 248).

[HK73] J. E. Hopcroft and R. M. Karp. “An n5/2 Algorithm for Maximum Matchings
in Bipartite Graphs”. In: SIAM Journal on Computing 2.4 (1973), pp. 225–231
(Cited on page 137).

Bibliography 275

[HM04] S. Har-Peled and S. Mazumdar. “On Coresets for k-means and k-median
Clustering”. In: Proceedings of the 36th Annual ACM Symposium on Theory
of Computing. 2004, pp. 291–300 (Cited on pages 107, 114).

[HOT06] G. E. Hinton, S. Osindero, and Y.-W. Teh. “A Fast Learning Algorithm for
Deep Belief Nets”. In: Neural Computation 18.7 (2006), pp. 1527–1554 (Cited
on page 25).

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2009 (Cited on pages 24, 27, 30, 41, 64–67, 113, 153, 157, 162 sq.,
165 sqq., 171 sq., 228, 258).

[Hu62] M.-K. Hu. “Visual Pattern Recognition by Moment Invariants”. In: IRE
Transactions on Information Theory 8.2 (1962), pp. 179–187 (Cited on pages 31,
145, 147).

[HW94] S. W. Hell and J. Wichmann. “Breaking the Diffraction Resolution Limit
by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Mi-
croscopy”. In: Optics Letters 19.11 (1994), pp. 780–782 (Cited on page 10).

[HWM05] H. Han, W.-Y. Wang, and B.-H. Mao. “Borderline-SMOTE: A New Over-
Sampling Method in Imbalanced Data Sets Learning”. In: Advances in Intelli-
gent Computing. Springer, 2005, pp. 878–887 (Cited on page 153).

[JB99] M. Jansen and A. Bultheel. “Multiple Wavelet Threshold Estimation by
Generalized Cross Validation for Images with Correlated Noise”. In: IEEE
Transactions on Image Processing 8.7 (1999), pp. 947–953 (Cited on page 29).

[JD13] H. Jain and K. Deb. “An Improved Adaptive Approach for Elitist Nondomi-
nated Sorting Genetic Algorithm for Many-Objective Optimization”. In: Evolu-
tionary Multi-Criterion Optimization. 2013, pp. 307–321 (Cited on page 194).

[JJN+91] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. “Adaptive Mixtures
of Local Experts”. In: Neural Computation 3.1 (1991), pp. 79–87 (Cited on
pages 28, 182).

[JK09] I.-J. Jeong and K.-J. Kim. “An Interactive Desirability Function Method to
Multiresponse Optimization”. In: European Journal of Operational Research
195.2 (2009), pp. 412–426 (Cited on page 59).

[JRZ14] M. Janidarmian, K. Radecka, and Z. Zilic. “Automated Diagnosis of Knee
Pathology Using Sensory Data”. In: 2014 EAI Fourth International Conference
on Wireless Mobile Communication and Healthcare (MobiHealth). 2014, pp. 95–
98 (Cited on page 150).

[JS97] I. M. Johnstone and B. W. Silverman. “Wavelet Threshold Estimators for Data
with Correlated Noise”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 59.2 (1997), pp. 319–351 (Cited on page 29).

[JSW98] D. R. Jones, M. Schonlau, and W. J. Welch. “Efficient Global Optimization
of Expensive Black-Box Functions”. In: Journal of Global Optimization 13.4
(1998), pp. 455–492 (Cited on pages 24 sq.).

[JT81] J. Jarvis and J. Tyson. “FOCAS: Faint Object Classification and Analysis
System”. In: The Astronomical Journal 86 (1981), pp. 476–495 (Cited on
pages 27, 31, 145, 147).

276 Bibliography

[JZK+07] S. Jiang, X. Zhou, T. Kirchhausen, and S. T. Wong. “Detection of Molecular
Particles in Live Cells via Machine Learning”. In: Cytometry Part A 71.8
(2007), pp. 563–575 (Cited on pages 2, 27–30, 167, 187, 248).

[KBM+09] S. Kannan, S. Baskar, J. D. McCalley, and P. Murugan. “Application of NSGA-
II Algorithm to Generation Expansion Planning”. In: IEEE Transactions on
Power Systems 24.1 (2009), pp. 454–461 (Cited on pages 49, 56).

[KC99] J. Knowles and D. Corne. “The Pareto Archived Evolution Strategy: A New
Baseline Algorithm for Pareto Multiobjective Optimisation”. In: Evolutionary
Computation. Vol. 1. 1999 (Cited on pages 49, 56).

[Kel99] C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and
Applied Mathematics (SIAM), 1999 (Cited on pages 24, 47).

[Ken10] J. Kennedy. “Particle Swarm Optimization”. In: Encyclopedia of Machine
Learning. Springer, 2010, pp. 760–766 (Cited on page 48).

[KKF+11] W. Konen, P. Koch, O. Flasch, T. Bartz-Beielstein, M. Friese, and B. Naujoks.
“Tuned Data Mining: A Benchmark Study on Different Tuners”. In: Genetic
and Evolutionary Computation Conference (GECCO). Vol. 11. 2011, pp. 1995–
2002 (Cited on pages 23 sqq., 48, 229, 245, 247).

[KL03] S. S. Keerthi and C.-J. Lin. “Asymptotic Behaviors of Support Vector Machines
with Gaussian Kernel”. In: Neural Computation 15.7 (2003), pp. 1667–1689
(Cited on page 171).

[KL10] K. Kumar and Y.-H. Lu. “Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy?” In: Computer 43.4 (2010), pp. 51–56 (Cited on
page 247).

[KN08] J. Knowles and H. Nakayama. “Meta-Modeling in Multiobjective Optimiza-
tion”. In: Multiobjective Optimization. Springer, 2008, pp. 245–284 (Cited on
page 245).

[Koh95] R. Kohavi. “A Study of Cross-Validation and Bootstrap for Accuracy Estima-
tion and Model Selection”. In: International Joint Conference on Artificial
Intelligence (IJCAI). Vol. 14. 2. 1995, pp. 1137–1145 (Cited on pages 46, 64,
113, 116, 144, 165, 197 sq., 223, 229).

[KP03] H. L. Kundel and M. Polansky. “Measurement of Observer Agreement”. In:
Radiology 228.2 (2003), pp. 303–308 (Cited on page 252).

[Kre71] E. Kretschmann. “Determination of Optical Constants of Metal by Excitation
of Surface Plasmons”. In: Zeitschrift für Physik 241.4 (1971), pp. 313–324
(Cited on page 12).

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems (NIPS). 2012, pp. 1097–1105 (Cited on page 246).

[Kun07] L. I. Kuncheva. “A Stability Index for Feature Selection”. In: Artificial Intelli-
gence and Applications. 2007, pp. 421–427 (Cited on pages 113, 116, 119 sqq.).

Bibliography 277

[Lan06] G. Landini. “Quantitative Analysis of the Epithelial Lining Architecture in
Radicular Cysts and Odontogenic Keratocysts”. In: Head & Face Medicine 2.4
(2006), pp. 1–9 (Cited on pages 145 sq.).

[Lea06] E. G. Learned-Miller. “Data Driven Image Models Through Continuous Joint
Alignment”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI) 28.2 (2006), pp. 236–250 (Cited on pages 33, 72).

[LEC+07] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. “An Em-
pirical Evaluation of Deep Architectures on Problems with Many Factors of
Variation”. In: Proceedings of the 24th International Conference on Machine
Learning (ICML). 2007, pp. 473–480 (Cited on page 25).

[Lib15a] P. Libuschewski. Feature Extraction on GPUs. Unpublished Program Code.
2015 (Cited on pages 144 sq.).

[Lib15b] P. Libuschewski. Random Forest Evaluator for GPUs. Unpublished Program
Code. 2015 (Cited on pages 144, 162, 167, 222, 244).

[Lin94] T. Lindeberg. “Scale-Space Theory: A Basic Tool for Analyzing Structures at
Different Scales”. In: Journal of Applied Statistics 21.1–2 (1994), pp. 225–270
(Cited on page 148).

[LKD+14] P. Libuschewski, D. Kaulbars, B. Dusza, D. Siedhoff, F. Weichert, H. Müller,
C. Wietfeld, and P. Marwedel. “Multi-Objective Computation Offloading for
Mobile Biosensors via LTE”. In: 2014 EAI Fourth International Conference on
Wireless Mobile Communication and Healthcare (MobiHealth). 2014, pp. 226–
229 (Cited on pages 2, 49, 233, 245 sq.).

[LL03] H.-T. Lin and C.-J. Lin. A Study on Sigmoid Kernels for SVM and the
Training of Non-PSD Kernels by SMO-Type Methods. Tech. rep. National
Taiwan University, 2003 (Cited on page 171).

[Llo82] S. P. Lloyd. “Least Squares Quantization in PCM”. In: IEEE Transactions on
Information Theory 28.2 (1982), pp. 129–137 (Cited on page 114).

[LLS08] D. Li, H. Luo, and Z. Shi. “Redundant DWT Based Translation Invariant
Wavelet Feature Extraction for Face Recognition”. In: 19th International
Conference on Pattern Recognition (ICPR). 2008, pp. 1–4 (Cited on page 109).

[LMS+14] P. Libuschewski, P. Marwedel, D. Siedhoff, and H. Müller. “Multi-Objective
Energy-Aware GPGPU Design Space Exploration for Medical or Industrial
Applications”. In: 2014 Tenth International Conference on Signal-Image Tech-
nology and Internet-Based Systems (SITIS). 2014, pp. 637–644 (Cited on
pages 49 sq., 241, 258).

[Low04] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In:
International Journal of Computer Vision (IJCV) 60.2 (2004), pp. 91–110
(Cited on page 93).

[LST+13a] P. Libuschewski, D. Siedhoff, C. Timm, A. Gelenberg, and F. Weichert. “Fuzzy-
Enhanced, Real-Time Capable Detection of Biological Viruses Using a Portable
Biosensor”. In: Proceedings of the International Joint Conference on Biomedical
Engineering Systems and Technologies (BIOSIGNALS). 2013, pp. 169–174
(Cited on pages 5, 10 sq., 22, 25, 68, 82, 96, 101, 104, 106, 125, 241, 257 sq.).

278 Bibliography

[LST+13b] P. Libuschewski, D. Siedhoff, C. Timm, and F. Weichert. “Mobile Detektion
Viraler Pathogene Durch Echtzeitfähige GPGPU-Fuzzy-Segmentierung”. In:
Bildverarbeitung für die Medizin 2013. Springer, 2013, pp. 326–331 (Cited on
pages 5, 10 sq., 22, 68, 101, 104, 125, 257 sq.).

[LSW13] P. Libuschewski, D. Siedhoff, and F. Weichert. “Energy-Aware Design Space
Exploration for GPGPUs”. In: Computer Science – Research and Development
29.3–4 (2013), pp. 171–176 (Cited on pages 49, 241).

[Luk13] S. Luke. Essentials of Metaheuristics (Second Edition). George Mason Univer-
sity, 2013. url: http://cs.gmu.edu/~sean/book/metaheuristics/ (Cited
on pages 26, 48–53, 55 sq., 178, 193).

[Luk15] S. Luke. The ECJ Owner’s Manual. George Mason University, 2015. url:
https://cs.gmu.edu/~eclab/projects/ecj/ (Cited on page 258).

[LW02] A. Liaw and M. Wiener. “Classification and Regression by RandomForest”. In:
R News 2.3 (2002), pp. 18–22 (Cited on pages 165, 167, 172).

[LWT12] P. Libuschewski, F. Weichert, and C. Timm. “Parameteroptimierte
und GPGPU-basierte Detektion viraler Strukturen innerhalb
Plasmonen-unterstützter Mikroskopiedaten”. In: Bildverarbeitung für die
Medizin 2012. Springer, 2012, pp. 237–242 (Cited on page 96).

[LWZ09] X.-Y. Liu, J. Wu, and Z.-H. Zhou. “Exploratory Undersampling for Class-
Imbalance Learning”. In: IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B: Cybernetics 39.2 (2009), pp. 539–550 (Cited on page 153).

[Mal99] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999 (Cited
on pages 29, 31).

[Mar63] D. W. Marquardt. “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters”. In: Journal of the Society for Industrial & Applied Mathematics
11.2 (1963), pp. 431–441 (Cited on page 47).

[MBC79] M. D. McKay, R. J. Beckman, and W. J. Conover. “Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
from a Computer Code”. In: Technometrics 21.2 (1979), pp. 239–245 (Cited
on pages 24, 47).

[MBW+12] M. A. Mayer, A. Borsdorf, M. Wagner, J. Hornegger, C. Y. Mardin, and
R. P. Tornow. “Wavelet Denoising of Multiframe Optical Coherence Tomogra-
phy Data”. In: Biomedical Optics Express 3.3 (2012), pp. 572–589 (Cited on
page 187).

[MCU+04] J. Matas, O. Chum, M. Urban, and T. Pajdla. “Robust Wide-Baseline Stereo
from Maximally Stable Extremal Regions”. In: Image and Vision Computing
22.10 (2004), pp. 761–767 (Cited on page 28).

[Mie08] G. Mie. “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”.
In: Annalen der Physik 330.3 (1908), pp. 377–445 (Cited on pages 9, 13).

[MKB09] P. Murugan, S. Kannan, and S. Baskar. “NSGA-II Algorithm for Multi-
Objective Generation Expansion Planning Problem”. In: Electric Power Sys-
tems Research 79.4 (2009), pp. 622–628 (Cited on pages 49, 56).

http://cs.gmu.edu/~sean/book/metaheuristics/
https://cs.gmu.edu/~eclab/projects/ecj/

Bibliography 279

[MM97] O. Maron and A. W. Moore. “The Racing Algorithm: Model Selection for Lazy
Learners”. In: Lazy Learning. Springer, 1997, pp. 193–225 (Cited on page 23).

[MMB+05] P. Majumdar, A. Moralejo, C. Bigongiari, O. Blanch, and D. Sobczynska.
“Monte Carlo Simulation for the MAGIC Telescope”. In: Proceedings of the
International Cosmic Ray Conference (ICRC). 2005, pp. 41–44 (Cited on
pages 33, 72, 248).

[MMB+14a] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. “A
Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I”.
In: IEEE Transactions on Evolutionary Computation 18.1 (2014), pp. 4–19
(Cited on pages 23, 26, 48 sq.).

[MMB+14b] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. “A
Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part II”.
In: IEEE Transactions on Evolutionary Computation 18.1 (2014), pp. 20–35
(Cited on pages 23, 26, 48 sq.).

[MMR+01] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. “An Introduction
to Kernel-Based Learning Algorithms”. In: IEEE Transactions on Neural
Networks 12.2 (2001), pp. 181–201 (Cited on pages 27 sq., 41, 157, 163 sq.).

[MNK11] T. Melange, M. Nachtegael, and E. E. Kerre. “Fuzzy Random Impulse Noise
Removal from Color Image Sequences”. In: IEEE Transactions on Image
Processing 20.4 (2011), pp. 959–970 (Cited on pages 95 sqq.).

[Mos89] P. Moscato. “On Evolution, Search, Optimization, Genetic Algorithms and Mar-
tial Arts: Towards Memetic Algorithms”. In: Caltech Concurrent Computation
Program, C3P Report 826 (1989), pp. 1–67 (Cited on page 48).

[MRE09] J. Mairhofer, K. Roppert, and P. Ertl. “Microfluidic Systems for Pathogen
Sensing: A Review”. In: Sensors 9.6 (2009), pp. 4804–4823 (Cited on page 2).

[MRK+11] K. Meffert, N. Rotstan, C. Knowles, and U. Sangiorgi. JGAP – Java Genetic
Algorithms and Genetic Programming Package. Open-Source Software. 2011.
url: http://jgap.sourceforge.net/ (Cited on page 257).

[MSB+13] W. K. Moon, Y.-W. Shen, M. S. Bae, C.-S. Huang, J.-H. Chen, and R.-F. Chang.
“Computer-Aided Tumor Detection Based on Multi-Scale Blob Detection
Algorithm in Automated Breast Ultrasound Images”. In: IEEE Transactions
on Medical Imaging 32.7 (2013), pp. 1191–1200 (Cited on pages 2, 27, 30,
148 sqq.).

[MSB95] F. Murtagh, J.-L. Starck, and A. Bijaoui. “Multiresolution in Astronomical
Image Processing: A General Framework”. In: International Journal of Imaging
Systems and Technology 6.4 (1995), pp. 332–338 (Cited on pages 27, 31 sq.,
91).

[MT01] K. Ma and X. Tang. “Translation-Invariant Face Feature Estimation Using Dis-
crete Wavelet Transform”. In: Wavelet Analysis and Its Applications. Springer,
2001, pp. 200–210 (Cited on page 109).

http://jgap.sourceforge.net/

280 Bibliography

[MT06] J. Mehnen and H. Trautmann. “Integration of Expert’s Preferences in Pareto
Optimization by Desirability Function Techniques”. In: Proceedings of the Fifth
CIRP International Seminar on Intelligent Computation in Manufacturing
Engineering (CIRP ICME ’06). 2006, pp. 293–298 (Cited on page 59).

[MTL78] R. McGill, J. W. Tukey, and W. A. Larsen. “Variations of Box Plots”. In: The
American Statistician 32.1 (1978), pp. 12–16 (Cited on pages 170, 206).

[MTT07] J. Mehnen, H. Trautmann, and A. Tiwari. “Introducing User Preference Using
Desirability Functions in Multi-Objective Evolutionary Optimisation of Noisy
Processes”. In: IEEE Congress on Evolutionary Computation (CEC). 2007,
pp. 2687–2694 (Cited on page 59).

[MZ92] S. Mallat and S. Zhong. “Characterization of Signals from Multiscale Edges”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
14.7 (1992), pp. 710–732 (Cited on page 29).

[NLE+15] O. Neugebauer, P. Libuschewski, M. Engel, H. Müller, and P. Marwedel.
“Plasmon-Based Virus Detection on Heterogeneous Embedded Systems”. In:
Proceedings of the 18th International Workshop on Software and Compilers
for Embedded Systems. 2015, pp. 48–57 (Cited on pages 16, 49, 241).

[NM65] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”.
In: The Computer Journal 7.4 (1965), pp. 308–313 (Cited on page 48).

[NW06] J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business
Media, 2006 (Cited on page 47).

[NW10] M. J. Nasse and J. C. Woehl. “Realistic Modeling of the Illumination Point
Spread Function in Confocal Scanning Optical Microscopy”. In: Journal of the
Optical Society of America A 27.2 (2010), pp. 295–302 (Cited on pages 27, 29).

[Oli+16] A. Olivas et al. IceCube Simulation Documentation. University of
Wisconsin-Madison. 2016. url: http://wiki.icecube.wisc.edu/index.
php/Simulation_Documentation_Wiki/ (Cited on page 249).

[Oli02] J. C. Olivo-Marin. “Extraction of Spots in Biological Images Using Multiscale
Products”. In: Pattern Recognition 35.9 (2002), pp. 1989–1996 (Cited on
pages 2, 15, 19, 27, 29 sqq., 248).

[Pat05] P. Pattnaik. “Surface Plasmon Resonance”. In: Applied Biochemistry and
Biotechnology 126.2 (2005), pp. 79–92 (Cited on page 12).

[PKC09] J. Pan, T. Kanade, and M. Chen. “Learning to Detect Different Types of
Cells under Phase Contrast Microscopy”. In: Microscopic Image Analysis with
Applications in Biology (MIAAB). 2009, pp. 1–8 (Cited on pages 2, 27 sq., 38,
72, 248).

[PMM+94] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. “Reducing
Misclassification Costs”. In: Proceedings of the Eleventh International Confer-
ence on Machine Learning (ICML). 1994, pp. 217–225 (Cited on page 153).

[PN06] S. H. R. Pasandideh and S. T. A. Niaki. “Multi-Response Simulation Opti-
mization Using Genetic Algorithm Within Desirability Function Framework”.
In: Applied Mathematics and Computation 175.1 (2006), pp. 366–382 (Cited
on page 59).

http://wiki.icecube.wisc.edu/index.php/Simulation_Documentation_Wiki/
http://wiki.icecube.wisc.edu/index.php/Simulation_Documentation_Wiki/

Bibliography 281

[Pow11] D. Powers. “Evaluation: From Precision, Recall and F-Measure to ROC, In-
formedness, Markedness & Correlation”. In: Journal of Machine Learning
Technologies 2 (2011), pp. 37–63 (Cited on pages 37, 45, 219, 251 sqq.).

[Pru15] Prudsys AG. Data Mining Cup (DMC). International Student Competition.
2015. url: http://www.data-mining-cup.de/ (Cited on page 24).

[RBZ06] M. J. Rust, M. Bates, and X. Zhuang. “Sub-Diffraction-Limit Imaging by
Stochastic Optical Reconstruction Microscopy (STORM)”. In: Nature Methods
3.10 (2006), pp. 793–796 (Cited on page 10).

[RC06] M. Reyes-Sierra and C. C. Coello. “Multi-Objective Particle Swarm Optimizers:
A Survey of the State-of-the-Art”. In: International Journal of Computational
Intelligence Research 2.3 (2006), pp. 287–308 (Cited on page 48).

[Ris01] I. Rish. “An Empirical Study of the Naive Bayes Classifier”. In: IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence. Vol. 3. 22. 2001,
pp. 41–46 (Cited on page 167).

[RN03] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 2nd ed.
Prentice Hall, 2003 (Cited on pages 157, 161, 167 sq.).

[RSV+13] T. Ruhe, M. Schmitz, T. Voigt, and M. Wornowizki. “DSEA: A Data Mining
Approach to Unfolding”. In: Proceedings of the International Cosmic Ray
Conference (ICRC). 2013 (Cited on page 2).

[Rud99] G. Rudolph. Evolutionary Search under Partially Ordered Sets. Tech. rep.
Department for Computer Science, LS11, University of Dortmund, Dortmund,
Germany, Technical Report CI-67/99, 1999 (Cited on pages 51, 55).

[Ruh13] T. Ruhe. “Data Mining on the Rocks. A Measurement of the Atmospheric
Muon Neutrino Flux using IceCube in the 59-String Configuration and a
Novel Data Mining Based Approach to Unfolding”. PhD thesis. TU Dortmund
University, 2013 (Cited on pages 2, 249).

[RW95] J. C. Russ and R. P. Woods. The Image Processing Handbook. CRC Press,
1995 (Cited on page 27).

[SD14] H. Seada and K. Deb. U-NSGA-III: A Unified Evolutionary Algorithm for
Single, Multiple, and Many-Objective Optimization. Tech. rep. Computational
Optimization and Innovation Laboratory (COIN), 2014 (Cited on page 194).

[SD15] H. Seada and K. Deb. “U-NSGA-III: A Unified Evolutionary Optimization
Procedure for Single, Multiple, and Many Objectives: Proof-of-Principle Re-
sults”. In: Evolutionary Multi-Criterion Optimization. 2015, pp. 34–49 (Cited
on page 194).

[Set10] B. Settles. Active Learning Literature Survey. Tech. rep. University of
Wisconsin-Madison, 2010 (Cited on page 246).

[SFL+14] D. Siedhoff, H. Fichtenberger, P. Libuschewski, F. Weichert, C. Sohler, and
H. Müller. “Signal/Background Classification of Time Series for Biological
Virus Detection”. In: Pattern Recognition. Ed. by X. Jiang, J. Hornegger,
and R. Koch. Vol. 8753. Lecture Notes in Computer Science. Springer, 2014,
pp. 388–398 (Cited on pages 5, 100, 107, 110, 117, 120 sq., 255, 257 sq.).

http://www.data-mining-cup.de/

282 Bibliography

[SH97] T. Scheffer and R. Herbrich. “Unbiased Assessment of Learning Algorithms”.
In: International Joint Conference on Artificial Intelligence (IJCAI). 1997
(Cited on pages 63, 67 sq., 197).

[SHM+12] J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna. “Adaptive Approach
for Variable Noise Suppression on Laser-Induced Breakdown Spectroscopy
Responses Using Stationary Wavelet Transform”. In: Analytica Chimica Acta
754 (2012), pp. 8–19 (Cited on page 187).

[SJS06] M. Sokolova, N. Japkowicz, and S. Szpakowicz. “Beyond Accuracy, F-Score
and ROC: A Family of Discriminant Measures for Performance Evaluation”.
In: AI 2006: Advances in Artificial Intelligence. Springer, 2006, pp. 1015–1021
(Cited on page 253).

[SL09] M. Sokolova and G. Lapalme. “A Systematic Analysis of Performance Measures
for Classification Tasks”. In: Information Processing & Management 45.4
(2009), pp. 427–437 (Cited on pages 44, 127, 253).

[SLN+09] I. Smal, M. Loog, W. Niessen, and E. Meijering. “Quantitative Comparison of
Spot Detection Methods in Live-Cell Fluorescence Microscopy Imaging”. In:
IEEE International Symposium on Biomedical Imaging: From Nano to Macro
(ISBI). 2009, pp. 1178–1181 (Cited on pages 2, 4, 27, 29 sq., 36 sq., 137, 187,
190, 203, 216, 248, 252).

[SLW+14] D. Siedhoff, P. Libuschewski, F. Weichert, A. Zybin, P. Marwedel, and H.
Müller. “Modellierung und Optimierung eines Biosensors zur Detektion viraler
Strukturen”. In: Bildverarbeitung für die Medizin 2014. Springer, 2014, pp. 108–
113 (Cited on pages 5, 33, 71, 73, 115, 257 sq.).

[SLW13] D. Siedhoff, P. Libuschewski, and F. Weichert. Knowledge Extraction and
Application in Biosensor Data Analysis. Poster Presentation at Interdisciplinary
College 2013 (IK 2013). 2013 (Cited on pages 5, 258).

[SMB98] J.-L. Starck, F. D. Murtagh, and A. Bijaoui. Image Processing and Data
Analysis: The Multiscale Approach. Cambridge University Press, 1998 (Cited
on pages 29, 91).

[SP94] M. Srinivas and L. M. Patnaik. “Genetic Algorithms: A Survey”. In: Computer
27.6 (1994), pp. 17–26 (Cited on page 48).

[SS04] A. J. Smola and B. Schölkopf. “A Tutorial on Support Vector Regression”. In:
Statistics and Computing 14.3 (2004), pp. 199–222 (Cited on page 163).

[SSK+13] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M.
Cook, and R. Moore. “Real-Time Human Pose Recognition in Parts from Single
Depth Images”. In: Communications of the ACM 56.1 (2013), pp. 116–124
(Cited on pages 33, 73).

[STM+15] V. Shpacovitch, V. Temchura, M. Matrosovich, J. Hamacher, J. Skolnik, P.
Libuschewski, D. Siedhoff, F. Weichert, P. Marwedel, H. Müller, K. Überla,
R. Hergenröder, and A. Zybin. “Application of Surface Plasmon Resonance
Imaging Technique for the Detection of Single Spherical Biological Submicrom-
eter Particles”. In: Analytical Biochemistry: Methods in the Biological Sciences
486 (2015), pp. 62–69 (Cited on pages 2, 5, 13, 15, 185, 243, 258 sq.).

Bibliography 283

[SWL+11] D. Siedhoff, F. Weichert, P. Libuschewski, and C. Timm. “Detection and
Classification of Nano-Objects in Biosensor Data”. In: Microscopic Image
Analysis with Applications in Biology (MIAAB). 2011, pp. 1–6 (Cited on
pages 5, 82, 142, 145 sq., 257 sq.).

[Sze06] R. Szeliski. “Image Alignment and Stitching: A Tutorial”. In: Foundations and
Trends® in Computer Graphics and Vision 2.1 (2006), pp. 1–104 (Cited on
page 78).

[SZS+14a] D. Siedhoff, A. Zybin, V. Shpacovitch, and P. Libuschewski. PAMONO Sensor
Data 100nm_27sep13_exp2. SFB 876 Project B2. 2014. doi: 10.15467/
e9ofalaebk (Cited on page 187).

[SZS+14b] D. Siedhoff, A. Zybin, V. Shpacovitch, and P. Libuschewski. PAMONO Sensor
Data 100nm_27sep13_exp3. SFB 876 Project B2. 2014. doi: 10.15467/
e9ofomedxc (Cited on page 187).

[SZS+14c] D. Siedhoff, A. Zybin, V. Shpacovitch, and P. Libuschewski. PAMONO Sensor
Data 200nm_10apr13. SFB 876 Project B2. 2014. doi: 10.15467/e9ofqnvl6o
(Cited on page 187).

[SZS+14d] D. Siedhoff, A. Zybin, V. Shpacovitch, and P. Libuschewski. PAMONO Sen-
sor Data 200nm_11apr13_1. SFB 876 Project B2. 2014. doi: 10.15467/
e9ofylrdvk (Cited on page 187).

[SZS+14e] D. Siedhoff, A. Zybin, V. Shpacovitch, and P. Libuschewski. PAMONO Sen-
sor Data 200nm_11apr13_2. SFB 876 Project B2. 2014. doi: 10.15467/
e9ofxjfh8g (Cited on page 187).

[TC13] A. Toma and J.-J. Chen. “Computation Offloading for Frame-Based Real-Time
Tasks with Resource Reservation Servers”. In: 2013 25th Euromicro Conference
on Real-Time Systems (ECRTS). 2013, pp. 103–112 (Cited on page 247).

[THJ+04] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. “Support Vector
Machine Learning for Interdependent and Structured Output Spaces”. In:
Proceedings of the 21st International Conference on Machine Learning (ICML).
2004, pp. 104–111 (Cited on pages 28, 39).

[Tim12] C. Timm. “Resource-Efficient Processing and Communication in Sensor/Actu-
ator Environments”. PhD thesis. TU Dortmund University, 2012 (Cited on
page 49).

[TM09] H. Trautmann and J. Mehnen. “Preference-Based Pareto Optimization in
Certain and Noisy Environments”. In: Engineering Optimization 41.1 (2009),
pp. 23–38 (Cited on page 59).

[TRS+02] D. Thomann, D. R. Rines, P. K. Sorger, and G. Danuser. “Automatic Fluores-
cent Tag Detection in 3D with Super-Resolution: Application to the Analysis
of Chromosome Movement”. In: Journal of Microscopy 208.1 (2002), pp. 49–64
(Cited on pages 2, 27, 29 sq., 149, 187, 248).

[TW06] H. Trautmann and C. Weihs. “On the Distribution of the Desirability Index
using Harrington’s Desirability Function”. In: Metrika 63.2 (2006), pp. 207–213
(Cited on pages 60 sqq., 195 sq., 258).

http://dx.doi.org/10.15467/e9ofalaebk
http://dx.doi.org/10.15467/e9ofalaebk
http://dx.doi.org/10.15467/e9ofomedxc
http://dx.doi.org/10.15467/e9ofomedxc
http://dx.doi.org/10.15467/e9ofqnvl6o
http://dx.doi.org/10.15467/e9ofylrdvk
http://dx.doi.org/10.15467/e9ofylrdvk
http://dx.doi.org/10.15467/e9ofxjfh8g
http://dx.doi.org/10.15467/e9ofxjfh8g

284 Bibliography

[VFB+14] T. Voigt, R. Fried, M. Backes, and W. Rhode. “Gamma-Hadron-Separation in
the MAGIC Experiment”. In: Data Analysis, Machine Learning and Knowledge
Discovery. 2014, pp. 115–124 (Cited on pages 2, 248).

[VJ01] P. Viola and M. Jones. “Rapid Object Detection using a Boosted Cascade
of Simple Features”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2001, pp. 511–518 (Cited on pages 27, 30).

[VS91] L. Vincent and P. Soille. “Watersheds in Digital Spaces: An Efficient Algorithm
Based on Immersion Simulations”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI) 13.6 (1991), pp. 583–598 (Cited on page 27).

[Wah89] F. M. Wahl. Digitale Bildsignalverarbeitung: Grundlagen, Verfahren, Beispiele.
Springer, 1989 (Cited on pages 92 sq.).

[WGS+10] C. Wolf, D. Gaida, A. Stuhlsatz, S. McLoone, and M. Bongards. “Organic Acid
Prediction in Biogas Plants Using UV/vis Spectroscopic Online-Measurements”.
In: Life System Modeling and Intelligent Computing. Springer, 2010, pp. 200–
206 (Cited on page 25).

[WGT+10] F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. Gurevich, M. Engel, H. Müller,
and P. Marwedel. “Signal Analysis and Classification for Surface Plasmon
Assisted Microscopy of Nanoobjects”. In: Sensors and Actuators B: Chemical
151.1 (2010), pp. 281–290 (Cited on pages 10 sq.).

[WHS+12] S. Wienert, D. Heim, K. Saeger, A. Stenzinger, M. Beil, P. Hufnagl, M. Dietel,
C. Denkert, and F. Klauschen. “Detection and Segmentation of Cell Nuclei
in Virtual Microscopy Images: A Minimum-Model Approach”. In: Nature
Scientific Reports 2 (2012), pp. 1–7 (Cited on pages 2, 27 sq., 36 sq., 137, 203,
248, 252).

[WMC10] Q. Wu, F. Merchant, and K. Castleman. Microscope Image Processing. Aca-
demic Press, 2010 (Cited on page 85).

[WNC07] J. Wang, P. Neskovic, and L. N. Cooper. “Improving Nearest Neighbor Rule
with a Simple Adaptive Distance Measure”. In: Pattern Recognition Letters
28.2 (2007), pp. 207–213 (Cited on page 163).

[WSP+10] S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao. “Label-
Free Imaging, Detection, and Mass Measurement of Single Viruses by Surface
Plasmon Resonance”. In: Proceedings of the National Academy of Sciences
107.37 (2010), pp. 16028–16032 (Cited on pages 33, 72).

[Wu04] F.-C. Wu. “Optimization of Correlated Multiple Quality Characteristics Using
Desirability Function”. In: Quality Engineering 17.1 (2004), pp. 119–126 (Cited
on page 59).

[WW98] J. Weston and C. Watkins. Multi-Class Support Vector Machines. Tech. rep.
Royal Holloway University of London, 1998 (Cited on page 163).

[YBC+10] Z. Yin, R. Bise, M. Chen, and T. Kanade. “Cell Segmentation in Microscopy
Imagery Using a Bag of Local Bayesian Classifiers”. In: IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (ISBI). 2010, pp. 125–
128 (Cited on pages 2, 27 sq., 248).

Bibliography 285

[Zad65] L. A. Zadeh. “Fuzzy Sets”. In: Information and Control 8.3 (1965), pp. 338–353
(Cited on page 95).

[ZBM+07] A. Zybin, D. Boecker, V. Mirsky, and K. Niemax. “Enhancement of the
Detection Power of Surface Plasmon Resonance Measurements by Optimization
of the Reflection Angle”. In: Analytical Chemistry 79.11 (2007), pp. 4233–4236
(Cited on page 12).

[ZBT07] E. Zitzler, D. Brockhoff, and L. Thiele. “The Hypervolume Indicator Revisited:
On the Design of Pareto-Compliant Indicators via Weighted Integration”.
In: Evolutionary Multi-Criterion Optimization. 2007, pp. 862–876 (Cited on
page 55).

[ZDT00] E. Zitzler, K. Deb, and L. Thiele. “Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results”. In: Evolutionary Computation 8.2 (2000),
pp. 173–195 (Cited on pages 51, 55).

[ZFS+07] B. Zhang, J. Fadili, J. L. Starck, and J. C. Olivo-Marin. “Multiscale Variance-
Stabilizing Transform for Mixed-Poisson-Gaussian Processes and Its Applica-
tions in Bioimaging”. In: IEEE International Conference on Image Processing
(ICIP). 2007 (Cited on pages 2, 27, 29 sqq., 248).

[Zha12] Z. Zhang. “Microsoft Kinect Sensor and Its Effect”. In: IEEE MultiMedia 19.2
(2012), pp. 4–10 (Cited on page 73).

[ZKG+10] A. Zybin, Y. A. Kuritsyn, E. L. Gurevich, V. V. Temchura, K. Überla, and
K. Niemax. “Real-Time Detection of Single Immobilized Nanoparticles by
Surface Plasmon Resonance Imaging”. In: Plasmonics 5.1 (2010), pp. 31–35
(Cited on pages 2, 9 sq., 13, 74, 87, 124, 185, 215).

[ZLT01] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Eidgenössische Technische Hochschule Zürich (ETH),
Institut für Technische Informatik und Kommunikationsnetze (TIK). 2001
(Cited on pages 49, 56).

[ZLX09] Y. Zhou, Y. Li, and S. Xia. “An Improved KNN Text Classification Algorithm
Based on Clustering”. In: Journal of Computers 4.3 (2009), pp. 230–237 (Cited
on pages 107, 109, 113).

[ZRL97] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: A New Data Clustering
Algorithm and Its Applications”. In: Data Mining and Knowledge Discovery
1.2 (1997), pp. 141–182 (Cited on page 114).

[ZSS+17] A. Zybin, V. Shpacovitch, J. Skolnik, and R. Hergenröder. “Optimal Conditions
for SPR-Imaging of Nano-Objects”. In: Sensors and Actuators B: Chemical
239 (2017). (Available online 22 July 2016), pp. 338–342 (Cited on pages 73,
185, 187).

	Introduction
	Motivation and Relevance
	Contributions of this Work
	Organization of the Thesis
	Acknowledgment

	Biological Virus Detection with the PAMONO Sensor
	PAMONO Capabilities and Applications
	The Physics Behind the PAMONO Sensor
	PAMONO Data and Analysis Task

	The SynOpSis Approach
	Abstract Task Description
	SynOpSis Overview
	Related Work
	Synthesis Stage
	Signal Model
	Synthetic Ground Truth Patterns and Classification

	Pattern Detector
	Input and Output
	Objectives

	Pattern Classifier
	Input and Output
	Objectives

	Optimization Stage
	Related Work
	Algorithm Choice for Optimizing PAMONO Data Analysis
	Genetic Algorithms
	Multi-Objective Genetic Algorithms
	Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
	Global versus Sequential Optimization of SynOpSis

	Desirability Functions for Formalizing Expert Preferences
	Harrington Desirability Functions
	Desirability Indices
	Desirability in SynOpSis

	Model Selection and Performance Estimation
	Generalization Performance
	Model Selection
	Performance Estimation

	Summary of SynOpSis and Application Stage

	Synthesis Stage for PAMONO
	Introduction
	A Signal Model for the PAMONO Sensor
	Applying the Model
	Experimental Protocol
	Computation

	Conclusion

	Pattern Detector for PAMONO
	Introduction
	Background Elimination
	Averaging Background Elimination
	Median Background Elimination
	Step Responses of Background Elimination Techniques
	Parameters

	Denoising
	Spatial Denoising Techniques
	Fuzzy Spatiotemporal Denoising
	Application-Specific Cleaning Heuristics
	Parameters

	Time Series Classification via Fuzzy Template Matching
	Time Series Preselection
	Matching Score
	Fuzzy Time Series Classification
	Parameters

	Time Series Classification via Translation-Invariant (TI) Wavelet Features
	Translation-Invariant Feature Extraction
	Feature Ranking and Selection
	Condensed k-NN Using Fast Coreset Clustering
	Performance
	Comparison to Fuzzy Template Matching
	Conclusion

	Segmentation
	Preprocessing on the Pixel-Level
	Aggregating Pixels to Polygons
	Postprocessing on the Polygon-Level
	Parameters

	Parameters of the Detector
	Matching and Labeling
	Conclusion

	Pattern Classifier for PAMONO
	Introduction
	Feature Extraction
	Features of Polygon Shape
	Features of Spatial Intensities
	Features of Spatiotemporal Intensities

	Balancing Class Prevalence
	Synthetic Minority Over-Sampling Technique (SMOTE)
	Adaptive Synthetic Sampling (ADASYN)
	Balancing in SynOpSis

	Feature Scale Normalization
	Methods for Affine Feature Scale Normalization
	Applying Feature Scale Normalization

	Feature Selection
	Approaches to Feature Selection
	Feature Selection in SynOpSis

	Learning Algorithms
	k-Nearest Neighbors Algorithm (k-NN)
	Support Vector Machine (SVM)
	Random Forest
	Naïve Bayes

	Results
	Learning Algorithms
	Balancing Class Prevalence
	Feature Selection
	Feature Extraction

	Remaining Parameters of the Classifier
	Conclusion

	Evaluation of SynOpSis for PAMONO
	Introduction
	PAMONO Experiments
	PAMONO Sensor Setup and Variations
	Description of PAMONO Experiments
	Signal-to-Noise Ratios

	Setup of SynOpSis for PAMONO
	Objectives and Reported Measures
	Genetic Algorithm Settings
	Desirability Settings
	Model Selection and Performance Estimation Strategies
	Computing Classifying Models
	Measurement System

	Illustrated Results of a Single Optimization and Analysis
	Optimization Options and Final Analysis Results
	Results Over Datasets
	Results Over Optimization Modes
	Results Over Desirability Modes
	Choice of Optimization and Desirability Mode
	Final Analysis Results Over Experiments
	Quality of Performance Estimates
	Specificity of Final Analysis Results
	Computation Time

	Parameter Choices of the Optimization Stage
	Examining Pareto Fronts in Parameter Space
	Modeling Parameter Set Quality in Objective Space

	Cross-Experiment Generalization Performance

	Conclusion and Future Work
	Conclusion
	Future Work

	Performance Measures and Equivalences
	Comparison of Wavelet Bases
	Publications and Author's Contributions
	Acronyms
	Mathematical Symbols
	Bibliography

